
1 Agents and Abstraction

Definition 1.1 (Planning Horizon):

• Static: The world does not change over time.

• Finite Horizon: The agent reasons about a fixed finite number of time steps. (Agent know when it
will end)

• Indefinite Horizon: The agent reasons about a finite but not predetermined number of time steps,
such as until goal completion. (Agent know it will end, but not sure when)

• Infinite Horizon: The agent plans as if it will continue operating forever. (agent know it will never
end)

Definition 1.2 (Representation):

• Explicit States: A state represents one possible configuration of the world.

• Features: Natural descriptors of states. (binary features can represent exponentially many states)

• Individuals and Relations: Use feature for reasoning about individuals and their relationships
without necessarily knowing all individuals or when there are infinitely many individuals.

Definition 1.3 (Computational Limits):

• Perfect Rationality: The agent always selects the optimal action, which is often not possible in
practice.

• Bounded Rationality: The agent selects a possibly sub-optimal action given its limited computa-
tional resources.

Definition 1.4 (Uncertainty):

• fully observable: agent knows the state of the world from the observation

• partially observable: there can be many state that are possible given an observation.

Definition 1.5 (Uncertain Dynamics):

• Deterministic: The outcome of an action is always the same.

• Stochastic: There is uncertainty over the states resulting from executing a given action.

Definition 1.6 (Goals or Complex Preferences):

• Achievement Goals: Goals that an agent aims to achieve, which can be represented as complex
logical formulas.

• Maintenance Goals: Goals that an agent seeks to maintain over time.

• Complex Preferences: Involves trade-offs between various desiderata, potentially at different times,
and may be either ordinal or cardinal (e.g: medical).

Definition 1.7 (Reasoning by Number of Agents):

• Single Agent Reasoning: The agent assumes any other agents are part of the environment, focusing
on individual goal achievement.

• Adversarial Reasoning: The agent considers another agent acting in opposition to its goals, common
in competitive settings.

• Multi-agent Reasoning: The agent strategically reasons about the actions and goals of other agents,
which may be cooperative, competitive, or independent.

1



2 Graph Search Algorithm

Space used in the algorithms are basically the size of Frontier.

Algorithm Frontier Runtime Space halts?

uninformed (no heuristic)
Depth-First Search LIFO Exp / O(bm) Linear / O(bm) No
Breadth-First Search FIFO Exp / O(bd) Exp / O(bd) Yes
Lowest-Cost-First Search Lowest cost Exp Exp Yes
Dijkstra’s Algorithm* Lowest cost O((V + E) log V ) O(V 2)
Iterative-Deepening Search* LIFO in FIFO 1 Exp / O(bd) Linear / O(bd) Yes 2

informed (has heuristic)
(Greedy) Best-First Search Global min heuristic Exp Exp No
Heuristic Depth-First Search Local min heuristic (LIFO) Exp / O(bm) Linear / O(bm) No
A* Search Lowest (cost + heuristic) Exp Exp Yes

b is the branching factor
m is the maximum depth of the search tree
d is the depth of the shallowest goal node.
1 a BFS but for every depth limit do a DFS
2 Guaranteed to terminate at depth d

Algorithm Completeness Optimality

uninformed (no heuristic)
Depth-First Search No (fails for infinite cycle) No (not considering all possibilities)
Breadth-First Search Yes Yes (if cost is uniform), only guarantee shallowest goal
Lowest-Cost-First Search Yes Yes
Dijkstra’s Algorithm* Yes Yes
Iterative-Deepening Search* Yes (Same as BFS) No (but guaranteed shallowest goal)

informed (has heuristic)
(Greedy) Best-First Search No (fails for infinite cycle) No (from not considering cost of arc)
Heuristic Depth-First Search No (fails for infinite cycle) No (not considering all possibilities)
A* Search Yes1 Yes1

1 Assuming heuristic is admissible, branch factor is finite, and arc cost are bounded above zero
If h satisfies the monotone restriction, A∗ with multiple path pruning always finds the shortest path to a goal.

Greedy Best-First Search’s frontier is a priority queue on heuristic.
Heuristic Depth-First Search is a DFS with path added to the stack ordered by heuristic.
A* Search’s frontier is a priority queue on (cost + heuristic). No algorithm with the same information

can do better.

Definition 2.1 (Admissible)An Admissible heuristic never overestimate the cost from any node to the
goal. An Admissible search algorithm returns an optimal solution if it exists.

Definition 2.2 (Monotone / Consistent)A heuristic function h satisfies the monotone restriction if h(m)−
h(n) ≤ cost(m,n) for every arc < m,n >. (The heuristic of a path is always less than or equal to the
true cost). Monotonicity is like admissibility but between any two nodes. So, a consistent heuristic is
admissible, but a admissible heuristic is not necessarily consistent.

Definition 2.3 (Dominating heuristic)A heuristic function h1 dominates h2 if ∀n(h2(n) ≥ h1(n)) and
∃n((h2(n) > h1(n)). A* using h2 will never expand more nodes than A* using h1.

2



3 Adversarial Search(Minimax)

• function minimax (node, depth, maximizingPlayer) is

if depth = 0 or node is a terminal node then

return the heuristic value of node

if maximizingPlayer then

value := -inf

for each child of node do

value := max(value, minimax(child, depth - 1, FALSE))

return value

else (* minimizing player *)

value := inf

for each child of node do

value := min(value, minimax(child, depth - 1, TRUE))

return value

• Suitable Type of Problem:

– Competitive two-person, zero-sum games.

– Two players take turns to move and the one winner one loser.

• Idea:

– Find best option for you on nodes you control (MAX)

– Assumes opponent will take worst option for you on their node (MIN)

– Recursively search leaf nodes and percolate optimal value upward

• Pruning Methods:

– Alpha-beta Pruning:

∗ Ignore portions of the search tree without losing optimality

∗ Useful in practise, does not change worst-case performance (Exp)

– Heuristic Pruning (Early Stopping):

∗ Heuristics are used to evaluate the potential of non-terminal states.

∗ This method saves computational resources but may not always yield the optimal solution.

4 Higher level strategies

Search
Search
Complexity

Difficulty Reason to Win

Symmetric bn
Not able to construct
backward on dynamically
constructed graph

Choose between forward / backward
search based on branching factor

Bidirectional 2b
k
2 << bk Make sure frontiers meet

Searches forward and backward
simultaneously, leading to exponential
savings in time and space.

Island-Driven mbk
k
m << bk

identify islands
hard to guarantee optimality

Decomposes the problem
into m smaller subproblems,
each of which is easier to solve.

3



5 Constraint Satisfaction Problems (CSPs)

• Definition:

– Set of variables, domain for each variable, set of constraints or evaluation function.

– Solution is an assignment to the variables that satisfies all constraints.

– Solution is a model of the constraints.

• Problem Types:

– Satisfiability Problems: Find assignment satisfies the given hard constraints.

– Optimization Problems: Find assignment optimizes the evaluation function(soft constraints).

• Search Representation:

Assignment Type Description

Complete Assignment
Node is assignment of value to all variables.
Neighbours are created by changing one variable value.

Partial Assignment
Nodes is assignment to the first k − 1 variables.
Neighbours are formed by assigning a value to the kth variable.

Search spaces can be extreme large, branching factor may be huge

N predefined starting nodes, and only goal is important (path is irrelevent)

• Dual Representations of Crossword Puzzle:

Type Nodes Domains Constraints

Primal word positions letters intersecting letters are same

Dual squares letters words must fit

• Example of CSP Setup:

Problem Variables Domains Constraints

Crosswords letters a-z words in dictionary

Crosswords words dictionary letters match

Scheduling times times,dates before, after
events types same resource
resources values

Party Planning guests values cliques

Ride Sharing people/trips locations cars

• Constraints & Solution

– Constraints: Can be N-ary (Over N variables) or Binary (Over 2 variables).

– Solutions:

Generate and Test

Exhaustively check all combinations against constraints.

Backtracking

Prune large portions of the state space by ordering variables and evaluating constraints.

Efficiency depends on order of variables.

Find optimal ordering is as hard as solving the problem.

Cut off large branches as soon as possible, push failures as high as possible.

Consistency Techniques

Look for inconsistencies to simplify the problem / Graphical representation

4



• Constraint Network (CN)

– Domain constraint:

unary constraint of values x on values in a domain, < X, c(X) >

– Domain consistent:

A node is Domain consistent if no domain value violates any domain constraints.

A CN is Domain consistent if all nodes are Domain consistent.

– Arc < X, c(X,Y ) > is:

A constraint on X posed by Y .

Arc consistent if for all X ∈ DX , there exist some Y ∈ DY such that c(X,Y ) is satisfied.

– CN is Arc consistent if all arcs are arc consistent.

– set of variables {X1, X2, . . . , XN} is path consistent if all arcs and domains are consistent

• AC-3 (CN) algorithm (Alan Mackworth, 1977)

– Purpose: Makes a Constraint Network (CN) arc consistent and domain consistent.

– Procedure:

∗ Initialize the To-Do Arcs Queue (TDA) with all inconsistent arcs.

∗ Make all domains domain consistent.

∗ Put all arcs in TDA.

∗ Repeat until TDA is empty:

· Select and remove an arc < X, c(X,Y ) > from TDA.

· Remove all values from the domain of X that:
do not have a corresponding value in the domain of Y
satisfying the constraint c(X,Y ).

· If any values were removed, for all Z ∕= Y , add back arcs < Z, c′(Z,X) > into TDA .
(Add back all constraints posed to other variable by X. As the X value enforced by the
constraints / arc we removed is used by some other constraints posted by X to other
variables)

– Termination:

∗ AC-3 always terminates under one of three conditions:

· Every domain is empty: no solution.

· Every domain has a single value: a solution.

· Some domains have 1+ value: not sure if a solution exists.
(further splitting and recursive call needed)

– Properties:

∗ Termination is guaranteed.

∗ Time complexity is O(cd3).1

∗ Consistency of each arc can be checked in O(d2) time.

– Different elimination ordering can result in different size of intermediate constraints.

1where n is the number of variables, c is the number of binary constraints, and d is the maximum size of any domain

5



– Variable Elimination

∗ Concept:

· Variables are eliminated one by one, transferring their constraints to neighbours.

· A single remaining variable with no values indicates an inconsistent network.

· Different ordering resulting in different sizing intermediate constraints.

∗ Algorithm:

· If only one variable remains, return the intersection of the (unary) constraints involving it.

· Select a variable X.
Join the constraints where X appears to form a new constraint R.
Project R onto other variables to form R2.
Place new constraint R2 between all variables previously connected to X.
Remove X from the problem.
Recursively solve the simplified problem.
Return R joined with the solution from the recursive call.

∗ Finding the optimal elimination ordering is as complex as the CSP itself.

• Local Search: (Back to CSP as Search)

– Maintain a variable assignment, select neighbours of the current assignment (e.g: improve heuris-
tic value), and stop when a satisfying assignment is found, or return the best assignment found.

– Aim is to find an assignment with zero unsatisfied constraints (Conflict)

– Goal is an assignment with zero conflicts (e.g: heuristic: # of conflicts)

• Greedy Descent Variants:

– At every step:
(Select the variable-value pair that minimize # of conflicts)
(Select a variable involved in the most # of conflicts, then a value minimize # of conflicts)
(Select a variable involved in any conflicts, then a value minimize # of conflicts)

(Select a variable at random, then a value minimize # of conflicts)
(Select a variable and value at random, accept if doesn’t increase2 # of conflicts)

2Sometime accept even increase # of conflicts to escape local minimum

6



• GSAT (Greedy SATisfiability):

– Start with a random assignment of values to all variables n
heuristic h(n) = # of unsatisfied constraints

– repeat until heuristic becomes 0 (Solved):

Evaluate neighbours of n (not n, cannot change same variable twice in a row);

Let n be the neighbour n′ that minimizes the heuristic, even if h(n′) > h(n).

– Problems:

stuck at local minimum, cannot pass a plateau where h(n) are uninformative.

Ridge is a local minimum where n-step look-ahead might help.

– Randomized GSAT: allow move to a random neighbour or reassign all
variable randomly.

– Tabu lists:

Maintain a tabu list of k last assignments to prevent cycling.

Reject assignments exist on tabu lists.3

More efficient than a list of complete assignments, but expensive if k is large.

• Stochastic local search is a mix of: (Good solution for when question is a mix of a and b)

– Greedy descent: Move to a lowest neighbour (GSAT)

– Random walk: taking some random steps

– Random restart: reassigning all values randomly

• Simulated Annealing (Variant of Stochastic local research)

(Idea: Move more randomly at the beginning, less randomly as time goes.)

– Pick a random value for a random variable (neighbour):

– Adopt if its an improvement.

– If it’s not an improvement, adopt it probabilistically based on temperature T . (High → Low)

– (move from current assignment n to new assignment n′ with probability e−
h(n′)−h(n)

T )4

Terminate when criteria is met.

• Parallel Search:

– Maintains a population of k individuals (total assignments).

– Updates each individual in the population at every stage.

– Reports when any individual is a solution.

– Operates like k restarts but with k times the minimum steps.

• Beam Search:

– Similar to parallel search with k individuals, but choosing the k best from all neighbours.

(All if there are less than k)

– Reduces to greedy descent when k = 1.

– The value of k limits space and parallelism.

3e.g: k = 1 means reject assignment of the same value to the variable chosen.
4difference in heuristic value divided by temperature

7



• Stochastic Beam Search:

– A variant of beam search, probabilistically choosing k individuals for the next generation.

(probability of a neighbour n is chosen is proportional to e−
h(n)
T )

– Maintains diversity among individuals and reflects their fitness (heuristic).

– Operates like asexual reproduction, with mutation allowing fittest individuals to prevail.

• Genetic Algorithms:

– Like stochastic beam search but combines pairs of individuals to create offspring.

– Fittest individuals are more likely to be chosen for reproduction.

– Crossover and mutation (change some value) to form new solutions.

– Continues until a solution is found.

• Crossover:

– Given two individuals, each offspring’s attributes are randomly chosen from one of the parents.

– The effectiveness depends on the ordering of variables, many variations are possible.

• Comparing Stochastic Algorithms:

– compare using the summary of statistics like mean runtime , median runtime, or mode runtimes
may not be informative.

• Runtime Distribution:

– Plots runtime or steps against the proportion of runs solved within that time.

– Helps in understanding the performance distribution of stochastic algorithms.

6 Inference and Planning

• Procedural

– Focus on algorithm development, programming, and execution.

– Emphasizes “how to” knowledge.

– Languages include C, C++, Java, etc.

• Declarative (AI)

– Centres on knowledge representation and reasoning.

– Utilizes databases and knowledge bases (KB).

– Languages include propositional logic, Prolog, etc.

• Logic

– Syntax: Defines acceptable sentence structure.

– Semantics: Explains the meaning of sentences and symbols.

– Proof: Sequence of sentences derivable using an inference rule.

• Logical Consequence

– Statements: Set {X}
– Interpretation: a set of truth assignments to {X}.
– model of {X}: an interpretation make {X} true.

8



– The world in which the truth assignments of a model hold is a (verifiable) model of {X}.
– {X} is inconsistent if it has no model.

– Statement A is a logical consequence of {X} if A is true in every model of {X}.

• Argument Validity

– An argument is considered valid if it satisfies any of the following conditions (Logically equivalent):

∗ The conclusions are a logical consequence of the premises.

∗ The conclusions hold true in every model of the premises.

∗ There is no scenario where all the premises are true and the conclusions are false.

∗ The implication from arguments to conclusions is a tautology, meaning it is always true.

• Proofs

– A Knowledge Base (KB) is a set of axioms.

– A proof procedure is a way of proving theorems.

– KB ⊢ g indicates that g can be derived from KB using the proof procedure.

– If KB ⊢ g, then g is considered a Theorem.

– A proof procedure is sound if KB ⊢ g implies KB |= g.

– A proof procedure is complete if KB |= g implies KB ⊢ g.

– There are two types of proof procedures: bottom up and top down.

• Complete Knowledge:

– Closed World Assumption:

∗ The agent is presumed to know everything or can prove everything.

∗ Cannot prove something implies it must be false (negation as failure).

– Open World Assumption: (Way harder than close world)

∗ The agent does not know everything.

∗ Cannot conclude anything from a lack of knowledge

• Bottom-up Proof (forward chaining):

Start from facts, use rules to generate all possible atoms

Rules Deduced Atoms Sequence
rain ← clouds ∧ wind. {near sea, cyclone}
clouds ← humid ∧ cyclone. {near sea, cyclone,wind}
clouds ← near sea ∧ cyclone. {near sea, cyclone,wind, clouds}
wind ← cyclone. {near sea, cyclone,wind, clouds, rain}
near sea.
cyclone.

• Top-Down Proof:

Rules Query Sequence
rain ← clouds ∧ wind. yes ← rain.
clouds ← humid ∧ cyclone. yes ← clouds ∧ wind
clouds ← near sea ∧ cyclone. yes ← near sea ∧ cyclone ∧ wind
wind ← cyclone. yes ← near sea ∧ cyclone
near sea. yes ← cyclone
cyclone. yes ←

9


