1.2 Data Collection

| Definition 1 A variate is a characteristic. of a unit.

1. Samplc Swveds
2. Observodional Sfuckes

the population or process.

Definition 2 An attribute of a population or process is a function of the variates over the .
| 3: Experimentad Studies

1.3 Data Summaries
Measures of location

n

e The sample mean §j = % >~ vi (also called the sample average).

i=1

o The sample median 1 or the middle value when n is odd and the sample is ordered
from smallest to largest, and the average of the two middle values when n is even.

o The sample mode, or the value of y which appears in the sample with the highest
frequency (not necessarily unique).

The sample mean, median and mode describe the “center” of the distribution of variate
values in a data set. The units for mean, median and mode (e.g. centimeters, degrees
Celsius, etc.) are the same as for the original variate.

Since the median is less affected by a few extreme observations (see Problem 1), it is a

more robust measure of location. medion ¢ beller

Measures of shape

e The sample skewness

91 = o 3/2
[ S -]
i=1
e The sample kurtosis
n
: L wi—9)*
g2=—"

Measures of shape generally indicate how the data, in terms of a relative frequency
histogram, differ from the Normal bell-shaped curve, for example whether one “tail” of
the relative frequency histogram is substantially larger than the other so the histogram is
asymmetric, or whether both tails of the relative frequency histogram are large so the data
are more prone to extreme values than data from a Normal distribution.

Sample skewness and sample kurtosis have no units.

Measures of dispersion or variability

e The sample variance:

@ 1 1
28 L =P = —— 2
s —n_lg(yz Fre——7f [;y@ =

and the sample standard deviation: s = Vs2,
o The(mange = y()—y(1) Where y(,) = max (y1,y2, - - -, Yn) and y(1) = min (y1,y2; - - - , Yn)-
o The interquartile range IQR (see Definition 5).

The sample variance and sample standard deviation measure the variability or spread of
the variate values in a data set. The units for standard deviation, range, and interquartile
range (e.g. centimeters, degrees Celsius, etc.) are the same as for the original variate.

Since the interquartile range is less affected by a few extreme observations (see Problem
2), it is a more robust measure of variability. lQR 1 bellesr

Kurtosis,

The sample kurtosis measures the heaviness of the tails and the peakedness of the data
relative to data that are Normally distributed. Since the term (y; — §)* is always positive,
the kurtosis is always positive. If the sample kurtosis is greater than 3 then this indicates
heavier tails (and a more peaked center) than data that are Normally distributed. For data
that arise from a model with no tails, for example the Uniform distribution, the sample

kurtosis will be less than 3.

Kurtpsis > 3 —>  beavier tails ¢ feaked C,tld'el)
Kurbosis <3 —>  no ils

Definition 3 Let {y(l),y(z), i ,y(n)} where Yy < Y2) < -+ < Yn be the order statistic
for the data set {y1,y2,...,yn}. For 0 < p <1, the pth (sample) quantile (also called the
100pth (sample) percentile),is a value, call it g(p), determined as follows:

o Let k= (n+ 1)p where n is the sample size.
o If k is an integer and 1 < k < n, then q(p) = y()-

o If k is mot an integer but 1 < k < n then determine the closest integer j such that
j<k<j+1 and then q(p) = % [y(j) aF y(j+1)}.

Definition 9 For a data set {y1,y2,...,Yn}, the empirical cumulative distribution function
or e.c.d.f. is defined by

__ number of values in the set {y1,ya,--.,yn} which are<y
n

F(y) forally e ®

The empirical cumulative distribution function is an (estimate; based on the data, of the
population cumulative distribution function.

the median, and the upper or third quartile respectively.

Definition 4 The quantilesiq(0.25),@(0:5) andg(0.75)) are called the lower or first quartile,

Definition 5 The interquartile range is IQR =@(0:75) = ¢(0:25): !

F’ef”“"ﬁ foj rom. .

values: Yy, 4(0.25), ¢ (0.5), ¢(0.75) , Y(n)-

Definition 6 The five number summary of a data set consists of the smallest observation,
the lower quartile, the median, the upper quartile and the largest value, that is, the five

(a) a “standard” frequency histogram where the intervals I; are of equal length. The
height of the rectangle for I is the frequency f; or relative frequency f;/n.

(b) a “relative” frequency histogram, where the intervals I; = [a;_1,a;) may or may not
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Definition 7 The sample correlation, denoted byr, for data{(z1,y1), (%2, 92),- -, (ZTn, Yn)} be of equal length. The theight of the rectangle for /; is set equal to
]
r= L _Jiln
V/SwaSyy aj = a1
where so that thelarea of the jth rectangle equals f;/n. 'With this choice of height we have
3 j
n n 1 n
Saz — Z(z'—i)2=z$2——(2z') k fi/n 1k n
= = = RN _Zl(uj—(tj—l)#:—zlszzzl
= i= g
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so the total area of the rectangles is equal to one.

&GPlot:

group B as compared to group B is

yi1/ (y11 + y12)

relative risk =
yo1/ (y21 + ya22)

Definition 8 For categorical data in the form of Table 1.6 the relative risk of event A m:

Qois), X= - 0.6744818

20.75): %= 06744818



2.1 Choosing a Statistical Model

Table 2.1: Properties of discrete versus Continuous Random variables

Property Discrete Continuous
T
cumulative Fa)=P(X<z)= t;IP(X =1) Fr)=P(X<z)= [ f(t)dt
distribl.ltion F is a right continuous step Fisa continum::
function function for all z € R function for all z € R
probability _ _ _ 4 .
e f@=P(X=0) f@)= £F @) #P(X =2)=0
function
P(XeA)=> P(X=x2) Pa<X <b)=F(b)—F(a)
Probability z€A b
of an event N zze;qf &) = aff L
Total oo
probability Y PX=z)=3 f(z)=1 J f@)dz=1
all © all © N
oo
Expectation Elg(X) = % g9(z) f () Elg(X)]= [ g(z) f(z)dz
allt T —00

Binomial Distribution
The discrete random variable (r.v.) Y has a Binomial distribution if its probability
function is of the form
P =4:0) = £i0) = (1)L -0y fory=0,1,...,n
Y
where 6 is a parameter with 0 < 6 < 1. For convenience we write Y ~ Binomial(n, 6).
Recall that E(Y) = nf and Var(Y) = n6(1 —0).

Poisson Distribution

The discrete random variable Y has a Poisson distribution if its probability function is
of the form
0ve?
fy0) = —— fory=0,1,2,...
y!
where 6 is a parameter with > 0. We write Y ~ Poisson(f). Recall that E(Y) = 6 and
Var(Y) =6.

Exponential Distribution
The continuous random variable Y has an Exponential distribution if its probability
density function is of the form

Fi0) = ge ¥ fory>0

where 6 is parameter with § > 0. We write Y ~ Exponential(f). Recall that E(Y) = 6 and
Var(Y) = 6%

Gaussian (Normal) Distribution
The continuous random variable Y has a Gaussian or Normal distribution if its proba-
bility density function is of the form

. . L _ Loy
f(y,ﬂ,cr)f\/z—mexp[ 352 W u)] fory e R

where p and o are parameters, with g € ® and o > 0. Recall that E(Y) = p,
Var(Y) = 02, and the standard deviation of Y is sd(Y) = 0. We write either Y ~ G(u,0)
or Y ~ N(u,0%). Note that in the former case, G(i, ), the second parameter is the stan-

dard deviation o whereas in the latter, N (u, 02), the second parameter is the variance 2.

Multinomial Distribution

The Multinomial distribution is a multivariate distribution in which the discrete random
variable’s ¥1,Ys,...,Y; (k> 2) have the joint probability function

PYVi=uy,Ya=y2,..., Y% =ur;0) = f(y1,92,-. ., uk; 0)

— n! Y1 gy2--- UK
B -

k
where y; =0,1,...for i=1,2,...,k and > y; = n. The elements of the parameter vector
i=1
k
0 = (01,02,...,0;) satisfy 0 < 0; <1fori=1,2,...,k and ) 6, = 1. This distribution is
i=1
a generalization of the Binomial distribution. It arises when there are repeated independent
trials, where each trial has k possible outcomes (call them outcomes 1,2,...,k), and the
probability outcome i occursis 0;. If Y;, i =1,2,..., k is the number of times that outcome i
occurs in a sequence of n independent trials, then (Y7,Y,. .., Yx) have the joint probability
function given in (2.1). We write (Y1, Y2, ...,Ys) ~ Multinomial(n; 6).

Theorem
If X is a random variable and a, b are some constants, then

1. Var(aX + _lz) = aZVa'r(X) The addition of a constant has no effect on the variance.

2.8D(aX + b) = a x SD(X), where SD stands for standard deviation

Fr $in GUNT), Yb(v, 0/ R)

¥I. R, it toke sd as Paro.mefef.



2.2 Maximum Likelihood Estimation

Definition 10 A point estimate of a parameter is the value of a function of the observed
data y1,Y2, . . ., Yn and other known quantities such as the sample sizen. We use 6 to denote
an estimate of the parameter 6.

Definition 11 The likelihood function for 6 is defined as -
L(O)=L(6;y)=P(Y =y;0) forfecQ

where the parameter space () is the set of possible values for 6.

Definition 12 The value of 6 which mazimizes L(0) for given data'y is called the maxi-
mum likelihood estimate 5 (m.l. estimate) of 0. It is the value of @ which mazimizes the
probability of observing the data'y. This value is denoted 6.

Definition 13 The relative likelihood function is defined as

R(0) = L(?) for8eQ H
L(6) :
Note that 0 < R(0) <1 for all 0 € Q. ;

Definition 14 The log likelihood function is defined as

1(0) =InL(0) =logL(#) fordecQ

Likelihood Function for a random sample
In many applications the data Y = (Y1,Y3,...,Y,) are independent and identically
distributed (ii.d.) random variables each with probability function f(y; ), 6 € Q. We refer
toY = (Y1,Ys,...,Y,) as a random sample from the distribution f(y;6). In this case the
observed data are y = (y1,¥2,...,Yn) and

L(0) = L(y;6) = iljlf(yi;m for € 0

Recall that if Y7,Y5,...,Y, are independent random variables then their joint probability
function is the product of their individual probability functions.

Combining likelihoods based on independent experiments

If we have two data sets y; and y2 from two independent studies for estimating 6, then
since the corresponding random variables Y; and Y3 are independent we have

P(Y1=1y1,Y2 =y20) = P(Y1=y1;0)P(Y2 = y2;0)
and we obtain the “combined” likelihood function L() based on yi1 and y2 together as
L(6) = L1(0) x Ly(0) forf e

where L;(0) = P(Y; = yj;0), j =1,2. This idea, of course, can be extended to more than
two independent studies.

Definition 15 If y1,y2,...,yn are the observed values of a random sample from a dis-
tribution with probability density function f(y;0), then the likelihood function is defined
as

LO)=L(0;y)= Iz[lf(yige) foroeQ

Named Observed Maximum Maximum Relative
Distributi Dat Likelihood Likelihood Likelihood
i e Estimate Estimator Function
Y1 g\Y
. O = () ()
Binomial(n, §) y 6=1 6=X
0<f<1
o
R o R@O)=(§)" (-9
Poisson(6) YLY2 - Yn b=3 6=Y
6>0
no. o\n@
A - 0 =(3) (i)
i =1 =_1_
Geometric(d) | y1,¥2,---,¥n 0=15 =17
0<f<1
_(0\"* (1.9\"F
Negative bk Gk R@)= (5) (179)
Binomial(k, 0) Hhida - oabin T kY T kY
0<f<1
RO = (§)"en0-)
Exponential(d) | y1,¥2,...,Yn b=7p =Y
6>0

% Cowpore febraﬁ%_@g,@b .

Table 2.2: Summary of Maximum Likelihood. Ethos for Named distributions



2.5 Invariance Property of Maximum Likelihood Estimate

Theorem 16 If0 = (91, 0o, ..., 9k) 1s the mazimum likelihood estimate of @ = (01,02, ... ,0)

then g(0) is the mazimum likelihood estimate of g (6).

3.2 The Steps of PPDAC

Type of problems:
e Descriptive: The problem is to determine a particular attribute of a population or
process.
e Causative: The problem is to determine the existence or non-existence of a causal

relationship between two variates.

e Predictive: The problem is to predict a future value for a variate of a unit to be selected
from the process or population. This is often the case in finance or in economics.

Definition 17 The target population or target process is the collection of units to which
the experimenters conducting the empirical study wish the conclusions to apply.

Definition 18 The study population or study process is the collection of units available to
be included in the study.

Definition 19 If the attributes in the study population/process differ from the attributes
in the target population/process then the difference is called study error.

| Target Population/Process |

!

| Study Population/Process |
!

!

Measured variate values |

Study error
Sample error

Measurement error

Definition 20 The sampling protocol is the procedure used to select a sample of units from
the study population/process. The number of units sampled is called the sample size.

Definition 21 If the attributes in the sample differ from the attributes in the study popu-
lation/process the difference is called sample error.

Definition 22 If the measured value and the true value of a variate are not identical the

difference is called measurement error.

4.2 Estimators and Sampling Distributions

Definition 23 A (point) estimator 0 is a random variable which is a function
6= 9g("1,Ys,...,Y,) of the random variables Y1,Ya,...,Y,. The distribution of 0 is called
the sampling distribution of the estimator.

4.3 Interval Estimation Using the Likelihood Function

Definition 24 Suppose 6 is scalar and that some observed data (say a random sample
Y1, Y2, - - -, Yn) have given a likelihood function L(0). The relative likelihood function R(6)

is defined as

R(0) = igg; foreQ

where O is the mazimum likelihood estimate and § is the parameter space.

|Deﬁniti0n 25 A 100p% likelihood interval for 6 is the set {6 : R(6) > p}l

Table 4.2: Guidelines for interpreting Likelihood Intervals

Values of 6 inside a 50% likelihood interval are very plausible
in light of the observed data.

Values of 6 inside a 10% likelihood interval are plausible
in light of the observed data.

Values of 6 outside a 10% likelihood interval are implausible
in light of the observed data.

Values of 6 outside a 1% likelihood interval are very implausible
in light of the observed data.

Definition 26 The log relative likelihood function is

7(0) = log R(0) = log [%] =10)—1(6) forbeQ

where 1(0) = log L(8) is the log likelihood function.




4.4 Confidence Intervals and Pivotal Quantities
Definition 27 Suppose the interval estimator [L(Y),U(Y)] has the property that

P{9 € [L(Y),UY)]} = P[L(Y) <O <U(Y)| = p

Important: P (0 € [L(y),U(y)]) = p is an incorrect statement. The parameter  is a
constant, not a random variable.

Definition 28 A pivotal quantity @ = Q(Y;0) is a function of the data Y and the un-
known parameter 0 such that the distribution of the random variable @ is fully known. That

is, probability statements such as P (Q < b) and P (Q > a) depend on a and b but not on 6
or any other unknown information.

4.5 - The Chi-squared and t Distribution

Theorem 29 Let Wy, W,
Then S = Y Wi ~ x* (X ki).
i=1 i=1

..., Wy be independent random variables with W; ~ x%(k;)

Theorem 30 If Z ~ G(0,1) then the distribution of W = Z? is x*(1).

Corollary 31 If Zy, Zs, ..., Z, are mutually independent G(0,1) random variables and
n

S =3 Z2% then S ~ x?(n).
i=1

Useful Results:

L If W ~ x2(1) then P(W > w) =2[1l — P(Z < \/w)] where Z ~ G (0, 1).

2. If W ~ x2(2) then W ~ Exponential (2) and P (W > w) = ¢~ %/2.

Theorem 32 Suppose Z ~ G(0,1) and U ~ x? (k) independently. Let

Z
VU/k

Then T has a Student’s t distribution with k degrees of freedom.

T =

4.6: Likelihood-Based Confidence Intervals

Theorem 33 If L(0) is based on Y = (Y1,Ys,...,Y,), a random sample of size n, and if
0 is the true value of the scalar parameter, then (under mild mathematical conditions) the
distribution of A (0) converges to a x*(1) distribution as n — cc.

Theorem 34 A 100p% likelihood interval is an approximate 100¢% confidence interval
where q = 2P (Z <+v/=2logp) =1 and Z ~ N (0,1).

Theorem 35 If a is a value such that p = 2P (Z < a) — 1 where Z ~ N (0,1), then the
likelihood interval {0 :R(0) > e=a?/ 2} is an approzimate 100p% confidence interval.

4.7: Confidence Interval for Parameters in the Gaussian Model

Theorem 36 Suppose Y1,Ya,...,Y, is a random sample from the G(p, o) distribution with
sample mean'Y and sample variance S*. Then

Yo .
T_S/ﬁ t(n—1) (4.13)

Theorem 37 Suppose Y1, Ys,

..., Yy is a random sample from the G(u, o) distribution with
sample variance S2.

) — 2 n - n - 2
U=%=%z(n—y)2=z<y’ Y) ~m-1) (415)

i=1 i=1 a

likelihood <> cmfidena

oviona of the Faint estimuto aom,va’g fo the so mean =



4.8: Chapter 4 Summary

Table 4.3: Approximate Confidence Interval for Named Distributions

) . ' . Table 4.4: Confidence/prediction intervals for
Based on Asymptotic Gaussian Pivotal Quantities

Gaussian and Exponential Models

Point Point Asymptotic Approximate Model Unknown Pivotal 100p%
Named Observed Est(i)xlrrllate Esti:]r;,tor Gaussian 100p% Quantity Quantity Confidence/Prediction
Distribution Data ) ] Pivotal Confidence Interval
Quantity Interval Gl o) -
 laoum Iz o~ G(0,1) jEao/yn
Binomial(n, 6) y ¥ b4 ?7199 B+ g4/ 00=0) G 0)
’ n n 1-06) 2% Y- _
: o unknown s ﬁNt(n_l) gEbs/v/n
— -0
Poisson(f Y1, Y25 -+ Y, g Y Ta 0+ \/g . 100p% Prediction
( ) 1 Y2, 1y Yn \/g 0ta ey G (u,0) y SY;I‘ ~t(n—1) Interval
4 unknown n . 1
o unknown gEbsy/1+5
Exponential(0) | y1,y2,---,Yn g Y % o+ a%
= G (p,0) 2 (n—1)$2 (n=1)s? (n—1)s*
u unknown 7 Y X (-1 [ [ }
. e o — lp ~ = l+p
Note: The value a is given by P (Z < a) = = where Z ~ G (0,1). InR, a qnorm( B ) Gl o) . . —
# unknown o2 X . N
5.1: Introduction to Hypothesis Testing
. . . . Exponential(6) [4 @ ~ x%(2n) [%ﬂ, 2%17]
Table 5.1: Guidelines for interpreting p-values

Notes: (1) The value a is given by P (Z <a) = %’2 where Z ~ G (0,1).

14p

IlltEI“pI'étation InR a= qnorm(f)
va= 2

p — value

p — value > 0.10 No evidence against Hy based on the observed data.

2) The value b is given by P (T < b) = 42 where T ~t(n—1). InR, b= qt( $2,n —1
3 q
)

2
(3) The values ¢ and d are given by P(W < ¢) = lz;p:P(W>d) where W ~ x2 (n — 1).

0.05 < p — value < 0.10 Weak evidence against Hy based on the observed data.

InR, c= qchisq(%,n - 1) and d = qchisq(l%’,n - 1)
(4) The values ¢; and d; are given by P (W < ¢1) = % =P (W > di) where W ~ x?(2n).
InR, ¢ = qchisq(?, Zn) and d; = qchisq(%fﬂn)

0.01 < p — value < 0.05
0.001 < p — value < 0.01

Evidence against Hp based on the observed data.

Strong evidence against Hy based on the observed data.

p — value < 0.001 Very strong evidence against Hy based on the observed data.

5.2 Hypothesis Testing for Parameters in Gaussian Model

the p—wvalue for testing Hy : = pq
is greater than or equal to 0.05 if and only if the value g = p is an element of a 95% confi-

dence interval for p (assuming we use the same pivotal quantity). .

the parameter value § = 6y is an element of
the 100¢% (approximate) confidence interval for 6 if and only if the p — value for testing

Hy : 0 = 0 is greater than or equal to 1 — q.

Chapter 5 Summary
Table 5.2: hypothesis test for named distributions
Based on Asymptotic Gaussian Pivotal Quantities

pm\w <> (CL

Table 5.3: Hypothesis tests for Gaussian and
Exponential models

N Point Point Test Approximate p — value
. Estimate Estimator Statistic for based on Gaussian
Distribution N ~ ; .
[4 0 Hy: 0 =10 approximation
2P <Z > M)
6—0o 99(1=00)
Binomial(n, 6) g L Y n
Z ~G(0,1)
. 9l L0
Poisson(6) ] Y i/_@ ®
%0
Z ~G(0,1)
|8—60| QP(ZZ 910)
Exponential(6) g Y E‘lo v
vn
Z ~G(0,1)

Test Exact
Model Hypothesi
- e Statistic p — value
9P (7 > 15—nol
G (u,0) T ¥~ ( - o/\/ﬁ)
o known 0 K= ko o/vn
Z~G(0,1)
P (T > |G—pol
cry . (12 52d)
o unknown 0 K= ko 5/v/n
T~t(n—1)
min(2P (W < (";%)52) s
(n—1)s*
G (u,0) Hoiomog | @02 2P (W > (o1 ))
© unknown %
W ~x2(n—1)
min(2P (W < %}g) ,
o 2ng
Exponential(6) Hy:0=10q % 2P (W 2% )
W~ x*(2n)

Note: To find 2P (Z > d) where Z ~ G (0,1) in R, use 2 * (1— pnorm(d))

(1) To find P (Z > d) where Z ~ G (0,1) in R, use 1— pnorm(d)
(2) To find P (T > d) where T ~ t(n— 1) in R, use 1— pt(d,n — 1)
(3) To find P (W < d) where W ~ x2?(n —1) in R, use pchisq(d,n — 1)




6 Gaussian Response Models

Definition 40 A Gaussian response model is one for which the distribution of the response
variate Y, given the associated vector of covariates x = (z1,%2,...,zx) for an individual
unit, is of the form

Y~ G(p(x),0(x)

If observations are made on n randomly selected units we write the model as

Y; ~ G (u(xi),0(x;)) fori=1,2,...,n independently

6.2: Simple Linear Regression;

Many studies involve covariates x, as described in Section 6.1. In this section we consider
the case in which there is a single covariate x. Consider the model with independent Y;’s
such that

‘ h (6.3)
This is of the form (6.1) with (3, 3,) replaced by (e, 3). The z;’s are assumed to be known
constants. The unknown parameters are «, 3, and o.

0o 1 )
L(aﬁﬁv G) = il;Il \/2—1ro_ €exp [_ﬁ (yi —a— th) ]
or more simply

L(a,3,0) =0 "exp —% _Zl(yi—a—ﬂz,-)z] foraceR, feR, 0>0

likelihood function is

The log

1 n
l(a,ﬁ,a)=—nloga—ﬁz(y.-—a—ﬁzi)2 foraeR, BeR 0>0
i=1

Table 6.1
Confidence/Prediction Intervals for
Simple Linear Regression Model

100p%
Unknown . . Pivotal P
Quantit Estimate Estimator Quantit Confidence/
Ay uBHLILY Prediction
Interval
8= )
; = ﬂ_ﬂ P
B a Se/VSzx B+as./VSiz
< Do (@i-2)Y:
S S ~t(n—2)
-0
& = & = 2 =
@ @ @ Se\/ 2 +E5 &+ as, ﬁ+%§
g bz Y- pz ~t(n—2)
fi(z)—p(z)
() = jL(x) = fi(z) = Se %*‘L;iﬁ -
p(x) jr(x) filx) Vats i (2) +as, %+§1§j)2
a+ fx &+ Bz @+ Bz ~t(n—2)
2=
g2
" 2= el [(,.-2)52 (11—2)52]
. > (via-pai)’ ¢ '
Syy—BS. = 2 (n—2
n—2 n—2 ~x*(n )
Y —ji(z) Prediction Interval
y Seyfr+iplazn?
2
ji(x) £asc\/1+ L+ LIS_;C)_
~t(n—2)
Notes: The value a is given by P (T < a) = 1—;E where T' ~ t (n — 2).
The values b and ¢ are given by P (W < b) = L;E =P (W > ¢) where W ~ x2 (n — 2).
V| Estimate | Std. Error t value Pr(>|t])
=2 a -
(Intercept) it sey/ L+ %L —bo0 | op |7 > lazol
S oy e o N
> 3-8 3-8 4
B | s | SR | o (re il

Sowplc Corvelodion - \/%;

S = (@ —2) =3 2 — n(a)?
i=1 i=1

Szy = i(zi —-z)(yi —y) = iziyi — nzy
=1 i=1

Sw=> -9 =3 (@)’
i=1 i=1

Confidence intervals for 5 and test of hypothesis of no relationship

Although the maximum likelihood estimate of o2 is

n

(g —a—fBa)? = L (Sv.v - BSI!/)

N 1
5=~
ni=1 n

we will estimate o2 using
1 - - 1 2
2 _ A 2 _
= o e = 0 (S = )
since E (Sf) = o2 where
1 =n R
52 = mgl(yz —a— fa;)’

Table 6.2
Hypothesis Tests for
Simple Linear Regression Model

Test p — value

Hypothesis
YP Statistic

Hy:8=7, M ZP(TZJ%) where '~ t (n — 2)

a—o0 "
Hy:a=ao . ()2 2P | T > —la—aol where T' ~ t (n — 2)
Sey| nt5ax oy f1yp@?
“ " Srrx
min (2P (W < ("ﬁ;?)—c) 2P (I-V > %ﬁ))
—92)82 0 0
Hy:0=o00 gn—ﬂ?—sﬂ

W~ x%(n—2)

R-Csiolmj sfo:m{wo( FEvror . Se/ estimalsr éf X

P’Vﬂlw. fw +u1‘i<) n=0 oanl P:o.



6.4 Comparison of Two Population Means

Table 6.3: confidence Interval for Two sample Table 6.4: Hypothesis Test for Two sample Gaussian Model

Gaussian Model
Model Hypothesis Test

Statistic p — value

Model Parameter Pivotal 100p% Confidence

Quantity Interval

G (p1,01) V1Yo (11, —ps) [91—F2— (# s )
v - ' 2 2P | Z > "2
G (p,01) Ni=VoGuopa) G (pg, 02) o 3.3 A,

\Jodea [a} | o3 Ho:py = \V m TR
G (p, 02) = s ey Gi-fatay/L+ 2 0 H1L = Ho ErRE 1
o1, 09 known -
o1, o2 known ~G(0,1) Z ~G(0,1)
g(ﬂbm) FoFapin ggulﬁ; (71— Fa— (3 —113) op (T N (l—"l #z)l)
125 _ _ H2,0 . S S Sy n n
(na; 02) Sp ﬁ"‘% g1 — J2 £ bs, i + n% Ho:py = py Sp "11+"12 1 2
K1 — Ha

ol=09=0 ~t(n1+n2—2) o unknown T ~t(ng+ng—2)

o unknown

2

min(2P (W < ﬁ—L"“L"’ 2) “)

G (py,0) (n14+n2—2)S2 52
, 2 (n14+n2-2)S ny+n; 2)a
G liz.0) o? - =t Gl g igmgy | @ 2p (W > e %))
d
2
~ ny+mng —2
11y, fip unknown X* (m 2—2) i1, Mo Unknown W~ x2(n1+ng — 2)
a‘éy ;ES:;EC : approximate p — value
el . G (1,01
¢ (py,01) pivotal quantity approximate 100p% G 702) [Y1-Yo—(p1—ps)
(pg,02) confidence interval 2 o 53 53 S |m—g2—(my —p,
fy — o P F o —2) Hy :py = py ny Ty 2P\ Z > 2 a2
o170 [, SR o1 o2 e
01, 02 unknown " on2 h-fatay it 01, 0o unknown
Z~G(0,1)

for large nq,ngy

Notes:

The value a is given by P (Z < a) = 1—;‘7- where Z ~ G (0,1).

The value b is given by P (T <b) = —;E whe re T ~t(ng+mng—2).

The values c and d are given by P (W < ¢) = T = P(W > d) where W ~ x2 (ny +n2 — 2).

6.5 general Gaussian Response Models

Theorem 42 The mazimum likelihood estimators for B = (B4, B, ..., 8;)T and o are:
B = (XTX)-IXTY (6.20)
ko
and &%= = E — ;) where fi; = 3 Bjwij (6.21)
j=1

Theorem 43 1. The estimators ﬁj are all Normally distributed random variables with
expected value B; and with variance given by the j'th diagonal element of the matriz

AA(XTX) Y j=1,2,... k.
2. The random variable 2 )52
no n—k)S,
W = ? = 702 £ (622)
has a Chi-squared distribution with n — k degrees of freedom.

3. The random variable W is independent of the random vector (By, ..., B}).

Remark!0 From Theorem 32 we can obtain confidence intervals and test hypotheses for

the regression coefficients using the pivotal

B, — B,
£ ~t(n—k) (6.23)

where c; is the j’th diagonal element of the matrix (X Tx )_



Multinomial Models and Goodness of Fit Tests

Multinomial Distribution’s Joint Probability Function

n! i

Y1,Y2, ... k91920k :79“9”---0‘1’,"thr0 :=0,1,... and i =n.
f(J’y7 s Yk I I ’ ) yl'yQ'yk' 172 k y] Pt ] ]E:ly]
Likelihood Function

n! Y1 Y2 Yk : ko

L(91, 92, ey Gk) = m91 92 o 9k Oor more sunply L(e) = j:10j7
Maximum Likelihood estimate

6; = Yooio12,.. 0k

n

Test hypothesis

H() . '9]' 29]'((1) fOI”j = 12,1’1

where a = (a1, a0,...,0p) and p < k — 1. In other words, p is equal to the number of

parameters that need to be estimated in the model assuming the null hypothesis (7.3).

Expected value

Ej=nbj(a@) forj=12,...k

Likelihood ratio test Statistic

L(8o)
L(B)

A =—2log |: :| where 8 maximizes L(6) assuming the null hypothesis (7.3) is true.
k
Let 89 = (61(@),...,0;(&)) denote the maximum likelihood estimator of @ under the null hypothesis A = 2 Z Y;log

k k

Y, Y

A=2Y"Y;log (EJ) observed - AZQ;%M%(;;)
j=1 J N

Distribution of Multinomial likelihood ratio test statistic

Recall that if 8 is a scalar, then A(6y) has approximately a x?(1) distribution for large n if Hy : 6 = 6
is true.

0;(a)

j=1

If 0 is a vector, then A(8)) still has approximately a x? distribution for large n if Hy : 6 = 6, is true,
but the degrees of freedom change.

The degrees of freedom in the multiparameter case depend on both how many parameters are

unknown in the original model, and how many parameters must be estimated under the null
hypothesis.

P-value
If n is large and Hy is true then the distribution of A is approximately x2 (k — 1 — p):
This enables us to compute p — values from observed data by using the approximation

p —value = P(A > X\; Ho) = P(W > \) where W ~ x?(k—1—p) e f\\\j' S

This approximation is a?curate when n is large and none of the 6;’s is too small. In Degrees of freedom = number of categories - 1 - number of
particular, the expected frequencies determined assuming Hp is true should all be at least |Fe———" parameters.

5 to use the Chi-squared approximation.

Test aF ,',\dq)wa&z\a oo df A ( yow coumk -1) ( Column ot - 1)



