1.2 Data Collection

Definition 1 A variate is a characteristic of a unit.

Definition 2 An <u>attribute</u> of a population or process is <u>a function of the variates over the</u> the population or process.

1.3 Data Summaries

Measures of location

- The sample mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ (also called the sample average).
- The sample median \hat{m} or the middle value when n is odd and the sample is ordered from smallest to largest, and the average of the two middle values when n is even.
- The sample mode, or the value of y which appears in the sample with the highest frequency (not necessarily unique).

The sample mean, median and mode describe the "center" of the distribution of variate values in a data set. The units for mean, median and mode (e.g. centimeters, degrees Celsius, etc.) are the same as for the original variate.

Since the median is less affected by a few extreme observations (see Problem 1), it is a more robust measure of location.

Measures of shape

Measures of shape generally indicate how the data, in terms of a relative frequency histogram, differ from the Normal bell-shaped curve, for example whether one "tail" of the relative frequency histogram is substantially larger than the other so the histogram is asymmetric, or whether both tails of the relative frequency histogram are large so the data are more prone to extreme values than data from a Normal distribution.

Sample skewness and sample kurtosis have no units.

- Let k = (n+1)p where n is the sample size.
- If k is an integer and $1 \le k \le n$, then $q(p) = y_{(k)}$.
- If k is not an integer but 1 < k < n then determine the closest integer j such that j < k < j + 1 and then $q(p) = \frac{1}{2} [y_{(j)} + y_{(j+1)}]$.

Definition 4 The quantiles q(0.25), q(0.5) and q(0.75) are called the lower or first quartile, the median, and the upper or third quartile respectively.

Definition 5 The interquartile range is IQR = q(0.75) - q(0.25).

Definition 6 The five number summary of a data set consists of the smallest observation, the lower quartile, the median, the upper quartile and the largest value, that is, the five values: $y_{(1)}$, q(0.25), q(0.5), q(0.75), $y_{(n)}$.

Definition 7 The sample correlation, denoted by r, for data $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ is

 $/S_{xx}S_{yy}$

where

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right)$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right)^2$$

Definition 8 For categorical data in the form of Table 1.6 the relative risk of event A in group B as compared to group \overline{B} is

$$velative \ risk = \frac{y_{11}/(y_{11} + y_{12})}{y_{21}/(y_{21} + y_{22})}$$

1: Sample Surveys 2: Observational studies 3: Experimental Studies

Measures of dispersion or variability

• The sample variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} y_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} y_{i} \right)^{2} \right]$$

and the sample standard deviation: $s = \sqrt{s^2}$.

- The range = $y_{(n)} y_{(1)}$ where $y_{(n)} = \max(y_1, y_2, \dots, y_n)$ and $y_{(1)} = \min(y_1, y_2, \dots, y_n)$.
- The *interquartile range IQR* (see Definition 5).

The sample variance and sample standard deviation measure the variability or spread of the variate values in a data set. The units for standard deviation, range, and interquartile range (e.g. centimeters, degrees Celsius, etc.) are the same as for the original variate.

Since the interquartile range is less affected by a few extreme observations (see Problem 2), it is a more robust measure of variability.

Kurtosis;

The sample kurtosis measures the heaviness of the tails and the peakedness of the data relative to data that are Normally distributed. Since the term $(y_i - \bar{y})^4$ is always positive, the kurtosis is always positive. If the sample kurtosis is greater than 3 then this indicates heavier tails (and a more peaked center) than data that are Normally distributed. For data that arise from a model with no tails, for example the Uniform distribution, the sample kurtosis will be less than 3.

Definition 9 For a data set $\{y_1, y_2, \ldots, y_n\}$, the empirical cumulative distribution function or e.c.d.f. is defined by

 $\hat{F}(y) = \frac{number \text{ of values in the set } \{y_1, y_2, \dots, y_n\} \text{ which are } \leq y}{\text{ for all } y \in \Re}$

The empirical cumulative distribution function is an estimate, based on the data, of the population cumulative distribution function.

trequency Diagrom;

- (a) a "standard" frequency histogram where the intervals I_j are of equal length. The height of the rectangle for I_j is the frequency f_j or relative frequency f_j/n .
- (b) a "relative" frequency histogram, where the intervals $I_j = [a_{j-1}, a_j)$ may or may not be of equal length. The height of the rectangle for I_j is set equal to

 $\frac{f_j/n}{a_j - a_{j-1}}$

so that the area of the *j*th rectangle equals f_j/n . With this choice of height we have

$$\sum_{j=1}^{k} (a_j - a_{j-1}) \frac{f_j/n}{(a_j - a_{j-1})} = \frac{1}{n} \sum_{j=1}^{k} f_j = \frac{n}{n} = 1$$

so the total area of the rectangles is equal to one.

QQplot: q(0.25); X = -0.6744898q(0.75); X = 0.6744898

2.1 Choosing a Statistical Model

	Property	Discrete	Continuous		
	cumulative distribution function	$F(x) = P(X \le x) = \sum_{t \le x} P(X = t)$ F is a right continuous step function for all $x \in \Re$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$ F is a continuous function for all $x \in \Re$		
	probability (density) function	$f\left(x\right) = P\left(X = x\right)$	$f(x) = \frac{d}{dx}F(x) \neq P(X = x) = 0$		
	Probability of an event	$P(X \in A) = \sum_{x \in A} P(X = x)$ $= \sum_{x \in A} f(x)$	$P(a < X \le b) = F(b) - F(a)$ $= \int_{a}^{b} f(x) dx$		
	Total probability	$\sum_{all x} P(X = x) = \sum_{all x} f(x) = 1$	$\int\limits_{-\infty}^{\infty}f\left(x\right)dx=1$		
	Expectation	$E\left[g\left(X\right)\right] = \sum_{all \ x} g\left(x\right) f\left(x\right)$	$E\left[g\left(X\right)\right] = \int_{-\infty}^{\infty} g\left(x\right) f\left(x\right) dx$		

Binomial Distribution

The discrete random variable (r.v.) Y has a Binomial distribution if its probability function is of the form

$$P(Y = y; \theta) = f(y; \theta) = {\binom{n}{y}} \theta^y (1 - \theta)^{n-y} \text{ for } y = 0, 1, \dots, n$$

where θ is a parameter with $0 < \theta < 1$. For convenience we write $Y \sim \text{Binomial}(n, \theta)$. Recall that $E(Y) = n\theta$ and $Var(Y) = n\theta(1-\theta)$.

Poisson Distribution

The discrete random variable Y has a Poisson distribution if its probability function is of the form

$$f(y; \theta) = rac{\theta^{g} e^{-\theta}}{y!}$$
 for $y = 0, 1, 2, ...$

 $f(y;\theta) = \frac{\theta \cdot e}{y!}$ for y = 0, 1, 2, ...where θ is a parameter with $\theta \ge 0$. We write $Y \sim \text{Poisson}(\theta)$. Recall that $E(Y) = \theta$ and $V_{\text{exp}}(Y) = \theta$ $Var(Y) = \theta.$

Exponential Distribution

The continuous random variable Y has an Exponential distribution if its probability density function is of the form

$$f(y;\theta) = \frac{1}{\theta}e^{-y/\theta}$$
 for $y \ge 0$

where θ is parameter with $\theta > 0$. We write $Y \sim \text{Exponential}(\theta)$. Recall that $E(Y) = \theta$ and $Var(Y) = \theta^2.$

Gaussian (Normal) Distribution

The continuous random variable Y has a Gaussian or Normal distribution if its probability density function is of the form

$$f(y;\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} \left(y-\mu\right)^2\right] \quad \text{for } y \in \Re$$

where μ and σ are parameters, with $\mu \in \Re$ and $\sigma > 0$. Recall that $E(Y) = \mu$, $Var(Y) = \sigma^2$, and the standard deviation of Y is $sd(Y) = \sigma$. We write either $Y \sim G(\mu, \sigma)$ or $Y \sim N(\mu, \sigma^2)$. Note that in the former case, $G(\mu, \sigma)$, the second parameter is the stan-dard deviation σ whereas in the latter, $N(\mu, \sigma^2)$, the second parameter is the variance σ^2 . $* \text{ In } \mathbb{R}$, it take so as parameter.

Multinomial Distribution

The Multinomial distribution is a multivariate distribution in which the discrete random variable's Y_1, Y_2, \ldots, Y_k $(k \ge 2)$ have the joint probability function

$$P(Y_1 = y_1, Y_2 = y_2, \dots, Y_k = y_k; \boldsymbol{\theta}) = f(y_1, y_2, \dots, y_k; \boldsymbol{\theta})$$
$$= \frac{n!}{y_1! y_2! \dots y_k!} \theta_1^{y_1} \theta_2^{y_2} \theta_k^{y_k}$$
(2.1)

where $y_i = 0, 1, ...$ for i = 1, 2, ..., k and $\sum_{i=1}^{k} y_i = n$. The elements of the parameter vector $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$ satisfy $0 \le \theta_i \le 1$ for $i = 1, 2, \dots, k$ and $\sum_{i=1}^k \theta_i = 1$. This distribution is a generalization of the Binomial distribution. It arises when there are repeated independent

trials, where each trial has k possible outcomes (call them outcomes $1, 2, \ldots, k$), and the probability outcome *i* occurs is θ_i . If Y_i , i = 1, 2, ..., k is the number of times that outcome *i* occurs in a sequence of n independent trials, then (Y_1, Y_2, \ldots, Y_k) have the joint probability function given in (2.1). We write $(Y_1, Y_2, \ldots, Y_k) \sim \text{Multinomial}(n; \boldsymbol{\theta})$.

neorem
f X is a random variable and a, b are some constants, then
1. $Var(aX+b)=a^2Var(X)$ The addition of a constant has no effect on the variance

2. $SD(aX+b) = a \times SD(X)$, where SD stands for standard deviation

For $y_i \sim G(N, \sigma)$, $\overline{Y} \sim G(N, \sigma/\pi)$

2.2 Maximum Likelihood Estimation

Definition 10 A point estimate of a parameter is the value of a function of the observed data y_1, y_2, \ldots, y_n and other known quantities such as the sample size n. We use $\hat{\theta}$ to denote an estimate of the parameter θ .

Definition 11 The likelihood function for θ is defined as

$$L(\theta) = L(\theta; \mathbf{y}) = P(\mathbf{Y} = \mathbf{y}; \theta) \text{ for } \theta \in \Omega$$

where the parameter space Ω is the set of possible values for θ .

Definition 12 The value of θ which maximizes $L(\theta)$ for given data \mathbf{y} is called the maximum likelihood estimate ⁵ (m.l. estimate) of θ . It is the value of θ which maximizes the probability of observing the data \mathbf{y} . This value is denoted $\hat{\theta}$.

Definition 13 The relative likelihood function is defined as

$$R(heta) = rac{L(heta)}{L(\hat{ heta})} \quad for \ heta \in \Omega$$

Note that $0 \leq R(\theta) \leq 1$ for all $\theta \in \Omega$.

Definition 14 The log likelihood function is defined as

 $l(\theta) = \ln L(\theta) = \log L(\theta) \quad for \ \theta \in \Omega$

* compare 的时候值也要bg

Likelihood Function for a random sample

In many applications the data $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)$ are independent and identically distributed (i.i.d.) random variables each with probability function $f(y;\theta), \theta \in \Omega$. We refer to $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)$ as a random sample from the distribution $f(y;\theta)$. In this case the observed data are $\mathbf{y} = (y_1, y_2, \dots, y_n)$ and

$$L(\theta) = L(\mathbf{y}; \boldsymbol{\theta}) = \prod_{i=1}^{n} f(y_i; \theta) \text{ for } \theta \in \Omega$$

Recall that if Y_1, Y_2, \ldots, Y_n are independent random variables then their joint probability function is the product of their individual probability functions.

Combining likelihoods based on independent experiments

If we have two data sets \mathbf{y}_1 and \mathbf{y}_2 from two independent studies for estimating θ , then since the corresponding random variables \mathbf{Y}_1 and \mathbf{Y}_2 are independent we have

 $P(\mathbf{Y}_1 = \mathbf{y}_1, \mathbf{Y}_2 = \mathbf{y}_2; \theta) = P(\mathbf{Y}_1 = \mathbf{y}_1; \theta) P(\mathbf{Y}_2 = \mathbf{y}_2; \theta)$

and we obtain the "combined" likelihood function $L(\theta)$ based on \mathbf{y}_1 and \mathbf{y}_2 together as

$L(\theta) = L_1(\theta) \times L_2(\theta) \text{ for } \theta \in \Omega$

where $L_j(\theta) = P(\mathbf{Y}_j = \mathbf{y}_j; \theta), j = 1, 2$. This idea, of course, can be extended to more than two independent studies.

Definition 15 If y_1, y_2, \ldots, y_n are the observed values of a random sample from a distribution with probability density function $f(y; \theta)$, then the likelihood function is defined as

$$L(\theta) = L(\theta; \mathbf{y}) = \prod_{i=1}^{n} f(y_i; \theta) \text{ for } \theta \in \Omega$$

Table 2.2: Summary of Maximum Likelihood. Ethos for Named distributions

Named Distribution	Observed Data	Maximum Likelihood Estimate	Maximum Likelihood Estimator	Relative Likelihood Function
$\operatorname{Binomial}(n, \theta)$	y	$\hat{ heta} = rac{y}{n}$	$\tilde{\theta} = \frac{Y}{n}$	$R\left(\theta\right) = \left(\frac{\theta}{\hat{\theta}}\right)^{y} \left(\frac{1-\theta}{1-\hat{\theta}}\right)^{n-y}$ $0 < \theta < 1$
$\operatorname{Poisson}(\theta)$	y_1, y_2, \dots, y_n	$\hat{ heta}=ar{y}$	$\tilde{\theta}=\overline{Y}$	$R\left(\theta\right) = \left(\frac{\theta}{\hat{\theta}}\right)^{n\hat{\theta}} e^{n\left(\hat{\theta} - \theta\right)}$ $\theta > 0$
$\operatorname{Geometric}(\theta)$	y_1, y_2, \dots, y_n	$\hat{ heta} = rac{1}{1+ar{y}}$	$ ilde{ heta} = rac{1}{1+Y}$	$\begin{split} R\left(\theta\right) &= \left(\frac{\theta}{\hat{\theta}}\right)^n \left(\frac{1-\theta}{1-\hat{\theta}}\right)^{n\tilde{y}} \\ 0 &< \theta < 1 \end{split}$
Negative Binomial (k, θ)	y_1, y_2, \dots, y_n	$\hat{ heta} = rac{k}{k+ar{y}}$	$\tilde{\theta} = \frac{k}{k+Y}$	$\begin{split} R\left(\theta\right) &= \left(\frac{\theta}{\hat{\theta}}\right)^{nk} \left(\frac{1-\theta}{1-\hat{\theta}}\right)^{n\bar{y}} \\ 0 &< \theta < 1 \end{split}$
$\operatorname{Exponential}(\theta)$	y_1, y_2, \ldots, y_n	$\hat{ heta}=ar{y}$	$\tilde{\theta} = \overline{Y}$	$R\left(heta ight) = \left(rac{\hat{ heta}}{ heta} ight)^n e^{n\left(1-\hat{ heta}/ heta ight)}$ $ heta > 0$

2.5 Invariance Property of Maximum Likelihood Estimate

Theorem 16 If $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k)$ is the maximum likelihood estimate of $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ then $g(\hat{\theta})$ is the maximum likelihood estimate of $g(\theta)$.

3.2 The Steps of PPDAC

Type of problems:

- **Descriptive:** The problem is to determine a particular attribute of a population or process.
- *Causative:* The problem is to determine the existence or non-existence of a causal relationship between two variates.
- *Predictive:* The problem is to predict a future value for a variate of a unit to be selected from the process or population. This is often the case in finance or in economics.

Definition 17 The target population or target process is the collection of units to which the experimenters conducting the empirical study wish the conclusions to apply.

Definition 18 The study population or study process is the collection of units available to be included in the study.

Definition 19 If the attributes in the study population/process differ from the attributes in the target population/process then the difference is called study error.

Definition 20 The sampling protocol is the procedure used to select a sample of units from the study population/process. The number of units sampled is called the sample size.

Definition 21 If the attributes in the sample differ from the attributes in the study population/process the difference is called sample error.

Definition 22 If the measured value and the true value of a variate are not identical the difference is called measurement error.

4.2 Estimators and Sampling Distributions

Definition 23 A (point) estimator $\tilde{\theta}$ is a random variable which is a function $\tilde{\theta} = g(Y_1, Y_2, \ldots, Y_n)$ of the random variables Y_1, Y_2, \ldots, Y_n . The distribution of $\tilde{\theta}$ is called the sampling distribution of the estimator.

4.3 Interval Estimation Using the Likelihood Function

Definition 24 Suppose θ is scalar and that some observed data (say a random sample y_1, y_2, \ldots, y_n) have given a likelihood function $L(\theta)$. The relative likelihood function $R(\theta)$ is defined as

$$R(heta) = rac{L(heta)}{L(\hat{ heta})} \quad for \ heta \in \Omega$$

where $\hat{\theta}$ is the maximum likelihood estimate and Ω is the parameter space.

Definition 25 A 100p% likelihood interval for θ is the set $\{\theta : R(\theta) \ge p\}$.

Table 4.2: Guidelines for interpreting Likelihood Intervals

Values of θ inside a 50% likelihood interval are very plausible					
in light of the observed data.					
Values of θ inside a 10% likelihood interval are plausible					
in light of the observed data.					
Values of θ outside a 10% likelihood interval are implausible					
in light of the observed data.					
Values of θ outside a 1% likelihood interval are very implausible					
in light of the observed data.					
Definition 26 The log relative likelihood function is					
$r(heta) = \log R(heta) = \log \left[rac{L\left(heta ight)}{L(\hat{ heta})} ight] = l(heta) - l(\hat{ heta}) \textit{for } heta \in \Omega$					

where $l(\theta) = \log L(\theta)$ is the log likelihood function.

Target Population/Process	
	Study error
Study Population/Process	
\downarrow	Sample error
Sample	
\downarrow	Measurement error
Measured variate values	

4.4 Confidence Intervals and Pivotal Quantities

Definition 27 Suppose the interval estimator $[L(\mathbf{Y}), U(\mathbf{Y})]$ has the property that

 $P\left\{\theta \in [L(\mathbf{Y}), U(\mathbf{Y})]\right\} = P\left[L(\mathbf{Y}) \le \theta \le U(\mathbf{Y})\right] = p$

Important: $P(\theta \in [L(\mathbf{y}), U(\mathbf{y})]) = p$ is an **incorrect** statement. The parameter θ is a constant, not a random variable.

Definition 28 A pivotal quantity $Q = Q(\mathbf{Y}; \theta)$ is a function of the data \mathbf{Y} and the unknown parameter θ such that the distribution of the random variable Q is fully known. That is, probability statements such as $P(Q \leq b)$ and $P(Q \geq a)$ depend on a and b but not on θ or any other unknown information.

4.5 - The Chi-squared and t Distribution

Theorem 29 Let W_1, W_2, \ldots, W_n be independent random variables with $W_i \sim \chi^2(k_i)$ Then $S = \sum_{i=1}^n W_i \sim \chi^2(\sum_{i=1}^n k_i)$.

Theorem 30 If $Z \sim G(0,1)$ then the distribution of $W = Z^2$ is $\chi^2(1)$.

Corollary 31 If Z_1, Z_2, \ldots, Z_n are mutually independent G(0, 1) random variables and $S = \sum_{i=1}^{n} Z_i^2$, then $S \sim \chi^2(n)$.

Useful Results:

1. If $W \sim \chi^2(1)$ then $P(W \ge w) = 2 \left[1 - P(Z \le \sqrt{w})\right]$ where $Z \sim G(0, 1)$.

2. If $W \sim \chi^2(2)$ then $W \sim Exponential(2)$ and $P(W \ge w) = e^{-w/2}$.

Theorem 32 Suppose $Z \sim G(0,1)$ and $U \sim \chi^2(k)$ independently. Let

$$T = \frac{Z}{\sqrt{U/k}}$$

Then T has a Student's t distribution with k degrees of freedom.

4.6: Likelihood-Based Confidence Intervals

Theorem 33 If $L(\theta)$ is based on $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)$, a random sample of size n, and if θ is the true value of the scalar parameter, then (under mild mathematical conditions) the distribution of $\Lambda(\theta)$ converges to a $\chi^2(1)$ distribution as $n \to \infty$.

Theorem 34 A 100p% likelihood interval is an approximate 100q% confidence interval where $q = 2P \left(Z \leq \sqrt{-2\log p}\right) - 1$ and $Z \sim N(0, 1)$.

Theorem 35 If a is a value such that $p = 2P(Z \le a) - 1$ where $Z \sim N(0,1)$, then the likelihood interval $\{\theta : R(\theta) \ge e^{-a^2/2}\}$ is an approximate 100p% confidence interval.

4.7: Confidence Interval for Parameters in the Gaussian Model

Theorem 36 Suppose Y_1, Y_2, \ldots, Y_n is a random sample from the $G(\mu, \sigma)$ distribution with sample mean \overline{Y} and sample variance S^2 . Then

$$T = \frac{\overline{Y} - \mu}{S/\sqrt{n}} \sim t \left(n - 1 \right) \tag{4.13}$$

Theorem 37 Suppose Y_1, Y_2, \ldots, Y_n is a random sample from the $G(\mu, \sigma)$ distribution with sample variance S^2 .

$$U = \frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2 = \sum_{i=1}^n \left(\frac{Y_i - \overline{Y}}{\sigma}\right)^2 \sim \chi^2 (n-1)$$
(4.15)

Variance of the point estimator corresponding to the sample mean = $\frac{Variance}{\# \text{ in sample.}}$

4.8: Chapter 4 Summary

Table 4.3: Approximate Confidence Interval for Named DistributionsBased on Asymptotic Gaussian Pivotal Quantities

Named Distribution	Observed Data	$\begin{array}{c} \text{Point} \\ \text{Estimate} \\ \hat{\theta} \end{array}$	Point Estimator $\tilde{\theta}$	Asymptotic Gaussian Pivotal Quantity	Approximate 100 <i>p</i> % Confidence Interval
$Binomial(n, \theta)$	y	$\frac{y}{n}$	$\frac{Y}{n}$	$\frac{\tilde{\theta}{-}\theta}{\sqrt{\frac{\tilde{\theta}(1-\tilde{\theta})}{n}}}$	$\hat{ heta} \pm a \sqrt{rac{\hat{ heta}(1-\hat{ heta})}{n}}$
$\operatorname{Poisson}(\theta)$	y_1, y_2, \ldots, y_n	$ar{y}$	\overline{Y}	$rac{ ilde{ heta}- heta}{\sqrt{rac{ ilde{ heta}}{n}}}$	$\hat{ heta} \pm a \sqrt{rac{\hat{ heta}}{n}}$
Exponential(θ)	y_1, y_2, \dots, y_n	$ar{y}$	\overline{Y}	$\frac{\tilde{\theta}-\theta}{\frac{\tilde{\theta}}{\sqrt{n}}}$	$\hat{ heta}\pm arac{\hat{ heta}}{\sqrt{n}}$

Note: The value *a* is given by $P(Z \le a) = \frac{1+p}{2}$ where $Z \sim G(0,1)$. In R, $a = \operatorname{qnorm}\left(\frac{1+p}{2}\right)$

5.1: Introduction to Hypothesis Testing

Table 5.1: Guidelines for interpreting p-values

p-value	Interpretation		
p-value > 0.10	No evidence against H_0 based on the observed data.		
0.05	Weak evidence against H_0 based on the observed data.		
0.01	Evidence against H_0 based on the observed data.		
0.001	Strong evidence against H_0 based on the observed data.		
$p-value \le 0.001$	Very strong evidence against H_0 based on the observed data.		

5.2 Hypothesis Testing for Parameters in Gaussian Model

the p-value for testing $H_0: \mu = \mu_0$

is greater than or equal to 0.05 if and only if the value $\mu = \mu_0$ is an element of a 95% confidence interval for μ (assuming we use the same pivotal quantity).

the parameter value $\theta = \theta_0$ is an element of erval for θ if and only if the p - value for testing

the 100q% (approximate) confidence interval for θ if and only if the p-value for testing $H_0: \theta = \theta_0$ is greater than or equal to 1-q.

Chapter 5 Summary

Table 5.2: hypothesis test for named distributionsBased on Asymptotic Gaussian Pivotal Quantities

Named Distribution	$\begin{array}{c} \text{Point} \\ \text{Estimate} \\ \hat{\theta} \end{array}$	$\begin{array}{c} \text{Point} \\ \text{Estimator} \\ \tilde{\theta} \end{array}$	Test Statistic for $H_0: \theta = \theta_0$	Approximate $p - value$ based on Gaussian approximation
$\operatorname{Binomial}(n, \theta)$	$\frac{y}{n}$	$\frac{Y}{n}$	$\frac{\left \tilde{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right }{\sqrt{\frac{\boldsymbol{\theta}_{0}\left(1-\boldsymbol{\theta}_{0}\right)}{n}}}$	$2P\left(Z \ge rac{\left \hat{ heta} - heta_0 ight }{\sqrt{rac{ heta_0(1- heta_0)}{n}}} ight)$ $Z \sim G\left(0,1 ight)$
$\operatorname{Poisson}(\theta)$	$ar{y}$	\overline{Y}	$\frac{ \tilde{\theta}-\theta_0 }{\sqrt{\frac{\theta_0}{n}}}$	$2P\left(Z \ge rac{ \hat{ heta} - heta_0 }{\sqrt{rac{ heta_0}{n}}} ight) onumber \ Z \sim G\left(0, 1 ight)$
Exponential (θ)	$ar{y}$	\overline{Y}	$\frac{\left \tilde{\theta}-\theta_{0}\right }{\frac{\theta_{0}}{\sqrt{n}}}$	$2P\left(Z \ge rac{\left \hat{ heta} - heta_0 ight }{rac{ heta_0}{\sqrt{n}}} ight) onumber \ Z \sim G\left(0,1 ight)$

Note: To find $2P(Z \ge d)$ where $Z \sim G(0,1)$ in R, use 2 * (1 - pnorm(d))

Table 4.4: Confidence/prediction intervals for Gaussian and Exponential Models

Model	Unknown Quantity	Pivotal Quantity	100p% Confidence/Prediction Interval
$G\left(\mu,\sigma ight)$ σ known	μ	$\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}}\sim G\left(0,1\right)$	$ar{y}\pm a\sigma/\sqrt{n}$
$G\left(\mu,\sigma ight) \ \sigma \ ext{unknown}$	μ	$\frac{\overline{Y}-\mu}{S/\sqrt{n}} \sim t \left(n-1\right)$	$ar{y}\pm bs/\sqrt{n}$
$G\left(\mu,\sigma ight)$ μ unknown σ unknown	Y	$\frac{Y-\overline{Y}}{S\sqrt{1+\frac{1}{n}}} \sim t \left(n-1\right)$	$\begin{array}{c} 100p\% \ \mathrm{Prediction} \\ \mathrm{Interval} \\ \bar{y} \pm bs \sqrt{1 + \frac{1}{n}} \end{array}$
$G\left(\mu,\sigma ight)$ μ unknown	σ^2	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 \left(n-1\right)$	$\left[\frac{(n-1)s^2}{d},\frac{(n-1)s^2}{c}\right]$
$G\left(\mu,\sigma ight)$ μ unknown	σ	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 \left(n-1\right)$	$\left[\sqrt{\frac{(n-1)s^2}{d}}, \sqrt{\frac{(n-1)s^2}{c}}\right]$
$\operatorname{Exponential}(\theta)$	θ	$\frac{2n\overline{Y}}{\theta} \sim \chi^2 \left(2n\right)$	$\left[rac{2nar{y}}{d_1},rac{2nar{y}}{c_1} ight]$

Notes: (1) The value a is given by $P(Z \le a) = \frac{1+p}{2}$ where $Z \sim G(0,1)$.

In R, $a = \operatorname{qnorm}\left(\frac{1+p}{2}\right)$

(2) The value b is given by $P(T \le b) = \frac{1+p}{2}$ where $T \sim t(n-1)$. In R, $b = qt\left(\frac{1+p}{2}, n-1\right)$ (3) The values c and d are given by $P(W \le c) = \frac{1-p}{2} = P(W > d)$ where $W \sim \chi^2(n-1)$. In R, $c = qchisq\left(\frac{1+p}{2}, n-1\right)$ and $d = qchisq\left(\frac{1+p}{2}, n-1\right)$

(4) The values c_1 and d_1 are given by $P(W \le c_1) = \frac{1-p}{2} = P(W > d_1)$ where $W \sim \chi^2(2n)$. In R, $c_1 = \operatorname{qchisq}\left(\frac{1-p}{2}, 2n\right)$ and $d_1 = \operatorname{qchisq}\left(\frac{1+p}{2}, 2n\right)$

p-value <>> CI

Table 5.3: Hypothesis tests for Gaussian and Exponential models

Model	Hypothesis	Test Statistic	Exact $p-value$
$G\left(\mu,\sigma ight) \ \sigma ext{ known}$	$H_0: \mu = \mu_0$	$\frac{\left \overline{Y}-\mu_{0}\right }{\sigma/\sqrt{n}}$	$2P\left(Z \ge rac{ ar{y}-\mu_0 }{\sigma/\sqrt{n}} ight) \ Z \sim G\left(0,1 ight)$
$G\left(\mu,\sigma ight) \ \sigma \ ext{unknown}$	$H_0: \mu = \mu_0$	$\frac{\left \overline{Y}-\mu_{0}\right }{S/\sqrt{n}}$	$2P\left(T \ge rac{ \overline{y}-\mu_0 }{s/\sqrt{n}} ight)$ $T \sim t \ (n-1)$
$G\left(\mu,\sigma ight)$ μ unknown	$H_0: \sigma = \sigma_0$	$\frac{(n-1)S^2}{\sigma_0^2}$	$\begin{split} \min(2P\left(W \leq \frac{(n-1)s^2}{\sigma_0^2}\right), \\ 2P\left(W \geq \frac{(n-1)s^2}{\sigma_0^2}\right)) \\ W \sim \chi^2 \left(n-1\right) \end{split}$
$ ext{Exponential}(heta)$	$H_0: heta= heta_0$	$\frac{2nar{Y}}{ heta_0}$	$egin{aligned} \min(2P\left(W\leqrac{2nar y}{ar heta_0} ight),\ 2P\left(W\geqrac{2nar y}{ar heta_0} ight))\ W\sim\chi^2\left(2n ight) \end{aligned}$

(1) To find $P(Z \ge d)$ where $Z \sim G(0,1)$ in R, use 1 - pnorm(d)(2) To find $P(T \ge d)$ where $T \sim t(n-1)$ in R, use 1 - pt(d, n-1)

(3) To find $P\left(W \leq d\right)$ where $W \sim \chi^2\left(n-1\right)$ in R, use pchisq(d, n-1)

6 Gaussian Response Models

Definition 40 A Gaussian response model is one for which the distribution of the response variate Y, given the associated vector of covariates $\mathbf{x} = (x_1, x_2, \dots, x_k)$ for an individual unit, is of the form

 $Y \sim G(\mu(\mathbf{x}), \sigma(\mathbf{x}))$

If observations are made on n randomly selected units we write the model as

$$Y_i \sim G(\mu(\mathbf{x}_i), \sigma(\mathbf{x}_i))$$
 for $i = 1, 2, ..., n$ independently

6.2: Simple Linear Regression;

Many studies involve covariates \mathbf{x} , as described in Section 6.1. In this section we consider the case in which there is a single covariate x. Consider the model with independent Y_i 's such that Y_i

$$a \sim G(\mu(x_i), \sigma) \text{ where } \mu(x_i) = \alpha + \beta x_i$$

$$(6.3)$$

This is of the form (6.1) with (β_0, β_1) replaced by (α, β) . The x_i 's are assumed to be known constants. The unknown parameters are α , β , and σ .

The likelihood function for (α, β, σ) is

$$L(\alpha, \beta, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2\sigma^2} (y_i - \alpha - \beta x_i)^2\right]$$

or more simply
$$L(\alpha, \beta, \sigma) = \sigma^{-n} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2\right] \text{ for } \alpha \in \Re, \ \beta \in \Re, \ \sigma > 0$$

The **log likelihood function is**
$$l(\alpha, \beta, \sigma) = -n \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 \text{ for } \alpha \in \Re, \ \beta \in \Re, \ \sigma > 0$$

Unknown Quantity	Estimate	Estimator	Pivotal Quantity	100p% Confidence/ Prediction Interval
β	$\hat{\beta} = \frac{S_{xy}}{S_{xx}}$	$\tilde{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})Y_i}{S_{xx}}$	$\frac{\tilde{\beta} - \beta}{S_e/\sqrt{S_{xx}}}$ $\sim t \left(n - 2 \right)$	$\hat{\beta} \pm a s_e / \sqrt{S_{xx}}$
α	$\hat{\alpha} =$ $\bar{y} - \hat{\beta}\bar{x}$	$\tilde{\alpha} =$ $\overline{Y} - \tilde{\beta} \bar{x}$	$\frac{\tilde{\alpha} - \alpha}{S_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}}}}$ ~ $t \left(n - 2\right)$	$\hat{\alpha} \pm a s_e \sqrt{\frac{1}{n} + \frac{\left(\bar{x}\right)^2}{S_{xx}}}$
$\mu \left(x \right) =$ $\alpha + \beta x$	$\hat{\mu}(x) =$ $\hat{\alpha} + \hat{\beta}x$	$\begin{split} \tilde{\mu}\left(x ight) &= \\ \tilde{lpha} + \tilde{eta} x \end{split}$	$\frac{\frac{\tilde{\mu}(x) - \mu(x)}{S_e \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}}}}}{\sim t \ (n-2)}$	$\hat{\mu}\left(x\right) \pm as_{e}\sqrt{\frac{1}{n} + \frac{\left(x-\bar{x}\right)^{2}}{S_{xx}}}$
σ^2	$s_e^2 = \frac{S_{yy} - \hat{\beta} S_{xy}}{n-2}$	$S_e^2 = \frac{\sum_{i=1}^n (Y_i - \tilde{\alpha} - \hat{\beta}x_i)^2}{n-2}$	$\frac{(n-2)S_e^2}{\sigma^2}$ $\sim \chi^2 (n-2)$	$\left[\frac{(n-2)s_e^2}{c},\frac{(n-2)s_e^2}{b}\right]$
Y			$\frac{Y - \tilde{\mu}(x)}{S_e \sqrt{1 + \frac{1}{n} + \frac{(x-x)^2}{S_{xx}}}}$ ~ $t (n-2)$	Prediction Interval $\hat{\mu}(x) \pm as_e \sqrt{1 + \frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}}}$

Notes: The value *a* is given by $P(T \le a) = \frac{1+p}{2}$ where $T \sim t(n-2)$. The values *b* and *c* are given by $P(W \le b) = \frac{1-p}{2} = P(W > c)$ where $W \sim \chi^2(n-2)$. $\chi^2(n-2)$.

J -	Estimate	Std. Error	t value	$\Pr(> t)$	R
(Intercept)	â	$s_e \sqrt{\frac{1}{n} + \frac{\left(\bar{x}\right)^2}{S_{xx}}}$	$\frac{\hat{\alpha} - \alpha_0}{s_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}}}}$	$2P\left(T \ge \frac{ \hat{\alpha} - \alpha_0 }{s_e \sqrt{\frac{1}{n} + \frac{(x)^2}{S_{xx}}}}\right)$	P-1
x	β	$s_e/\sqrt{S_{xx}}$	$\frac{\hat{\beta} - \beta_0}{s_e/\sqrt{S_{xx}}}$	$2P\left(T \ge \frac{\left \hat{\beta} - \beta_0\right }{s_e/\sqrt{S_{xx}}}\right) \not$) ·

Sample correlation
$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

 $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n(\bar{x})^2$
 $S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}$
 $S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - n(\bar{y})^2$

Confidence intervals for β and test of hypothesis of no relationship

Although the maximum likelihood estimate of
$$\sigma^2$$
 is
$$\dot{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n (y_i - \dot{\alpha} - \dot{\beta}x_i)^2 = \frac{1}{n} \left(S_{yy} - \dot{\beta}S_{xy}\right)$$

we will estimate σ^2 using

$$s_{c}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{\alpha} - \hat{\beta}x_{i})^{2} = \frac{1}{n-2} \left(S_{yy} - \hat{\beta}S_{xy} \right)$$

since $E(S_e^2) = \sigma^2$ where

$$S_e^2 = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - \tilde{\alpha} - \tilde{\beta} x_i)^2$$

 $\tilde{\beta} \sim G\left(\beta, \frac{\sigma}{\sqrt{S_{xx}}}\right)$

Table 6.2 Hypothesis Tests for Simple Linear Regression Model

Hypothesis	Test Statistic	p-value			
$H_0:\beta=\beta_0$	$\frac{\left \tilde{\beta}-\beta_{0}\right }{S_{e}/\sqrt{S_{xx}}}$	$2P\left(T \ge \frac{\left \hat{\beta} - \beta_0\right }{s_e/\sqrt{S_{xx}}}\right) \text{where } T \sim t \left(n-2\right)$			
$H_0: \alpha = \alpha_0$	$\frac{ \tilde{\alpha} - \alpha_0 }{S_e \sqrt{\frac{1}{n} + \frac{\langle x \rangle^2}{S_{xx}}}}$	$2P\left(T \ge \frac{ \hat{\alpha} - \alpha_0 }{s_e \sqrt{\frac{1}{n} + \frac{\langle x \rangle^2}{S_{xx}}}}\right) \text{where } T \sim t \left(n - 2\right)$			
$H_0: \sigma = \sigma_0$	$\frac{(n-2)S_e^2}{\sigma_0^2}$	$\begin{split} \min\left(2P\left(W \leq \frac{(n-2)s_e^2}{\sigma_0^2}\right), 2P\left(W \geq \frac{(n-2)s_e^2}{\sigma_0^2}\right)\right)\\ W \sim \chi^2\left(n-2\right) \end{split}$			

Residual standard Error: Se, estimator of
$$\sigma$$
.
p-value for testing $\alpha = 0$ and $\beta = 0$.

6.4 Comparison of Two Population Means

Table 6.3: confidence Interval for Two sample Gaussian Model

					Test				
Model	Parameter	Pivotal Quantity	100 <i>p</i> % Confidence Interval		Model	Hypothesis	Statistic	p-value	
$\begin{array}{c} G\left(\mu_{1},\sigma_{1}\right)\\ G\left(\mu_{2},\sigma_{2}\right)\\ \sigma_{1},\sigma_{2}\text{ known} \end{array}$	$\mu_1 - \mu_2$	$\frac{\overline{Y}_{1} - \overline{Y}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$ $\sim G(0, 1)$	$\bar{y}_1 - \bar{y}_2 \pm a \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$		$\begin{array}{l} G\left(\mu_{1},\sigma_{1}\right)\\ G\left(\mu_{2},\sigma_{2}\right)\\ \sigma_{1},\sigma_{2} \text{ known} \end{array}$	$H_0: \mu_1 = \mu_2$	$\frac{\left \overline{Y}_1-\overline{Y}_2-(\mu_1-\mu_2)\right }{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}$	$2P\left(Z \ge \frac{ \bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2) }{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right)$ $Z \sim G(0, 1)$	
$G(\mu_1, \sigma_1)$ $G(\mu_2, \sigma_2)$ $\sigma_1 = \sigma_2 = \sigma$ $\sigma \text{ unknown}$	$\mu_1 - \mu_2$	$\frac{\overline{Y}_{1} - \overline{Y}_{2} - (\mu_{1} - \mu_{2})}{S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$ ~ $t (n_{1} + n_{2} - 2)$	$\bar{y}_1 - \bar{y}_2 \pm b s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$		$egin{array}{l} G\left(\mu_{1},\sigma ight)\ G\left(\mu_{2},\sigma ight)\ \sigma \ { m unknown} \end{array}$	$H_0: \mu_1=\mu_2$	$\frac{\left \overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)\right }{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$2P\left(T \ge \frac{ \bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2) }{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}\right)$ $T \sim t (n_1 + n_2 - 2)$	
$\begin{array}{c} G\left(\mu_{1},\sigma\right)\\ G\left(\mu_{2},\sigma\right)\\ \mu_{1},\mu_{2} \text{ unknown} \end{array}$	σ^2	$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi^2 (n_1 + n_2 - 2)$	$\left[\frac{(n_1+n_2-2)s_p^2}{d}, \frac{(n_1+n_2-2)s_p^2}{c}\right]$		$\begin{array}{c} G\left(\mu_{1},\sigma\right)\\ G\left(\mu_{2},\sigma\right)\\ \end{array}$ μ_{1},μ_{2} unknown	$H_0: \sigma = \sigma_0$	$\frac{(n_1+n_2-2)S_p^2}{\sigma_0^2}$	$\begin{split} \min(2P\left(W \leq \frac{(n_1+n_2-2)s_p^2}{\sigma_0^2}\right), \\ 2P\left(W \geq \frac{(n_1+n_2-2)s_p^2}{\sigma_0^2}\right)) \\ W \sim \chi^2 \left(n_1+n_2-2\right) \end{split}$	
$\begin{array}{c} G\left(\mu_{1},\sigma_{1}\right)\\ G\left(\mu_{2},\sigma_{2}\right)\\ \\ \sigma_{1}\neq\sigma_{2}\\ \sigma_{1},\sigma_{2} \text{ unknown} \end{array}$	$\mu_1 - \mu_2$	asymptotic Gaussian pivotal quantity $\frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ for large n_1, n_2	approximate 100p% confidence interval $\bar{y}_1 - \bar{y}_2 \pm a \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$		$\begin{array}{c} G\left(\mu_{1},\sigma_{1}\right)\\ G\left(\mu_{2},\sigma_{2}\right)\\ \\ \sigma_{1}\neq\sigma_{2}\\ \\ \sigma_{1},\sigma_{2} \text{ unknown} \end{array}$	$H_0: \mu_1 = \mu_2$	$\frac{\left \overline{Y}_1-\overline{Y}_2-(\mu_1-\mu_2)\right }{\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}}$	approximate $p - value$ $2P\left(Z \ge \frac{ \bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2) }{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}\right)$ $Z \sim G(0, 1)$	

Notes:

The value *a* is given by $P(Z \le a) = \frac{1+p}{2}$ where $Z \sim G(0,1)$. The value *b* is given by $P(T \le b) = \frac{1+p}{2}$ where $T \sim t (n_1 + n_2 - 2)$. The values *c* and *d* are given by $P(W \le c) = \frac{1-p}{2} = P(W > d)$ where $W \sim \chi^2 (n_1 + n_2 - 2)$.

6.5 general Gaussian Response Models

Theorem 42 The maximum likelihood estimators for $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_k)^T$ and σ are:

$$\tilde{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{Y}$$
(6.20)

and
$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \tilde{\mu}_i)^2$$
 where $\tilde{\mu}_i = \sum_{j=1}^k \tilde{\beta}_j x_{ij}$ (6.21)

1. The estimators $\tilde{\beta}_i$ are all Normally distributed random variables with Theorem 43 expected value β_j and with variance given by the j'th diagonal element of the matrix $\sigma^2 (X^T X)^{-1}, j = 1, 2, \dots, k.$

2. The random variable

$$W = \frac{n\tilde{\sigma}^2}{\sigma^2} = \frac{(n-k)S_e^2}{\sigma^2} \tag{6.22}$$

has a Chi-squared distribution with n - k degrees of freedom.

3. The random variable W is independent of the random vector $(\tilde{\beta}_1, \ldots, \tilde{\beta}_k)$.

Remark¹⁶ From Theorem 32 we can obtain confidence intervals and test hypotheses for the regression coefficients using the pivotal

$$\frac{\tilde{\beta}_j - \beta_j}{S_e \sqrt{c_j}} \sim t \, (n - k) \tag{6.23}$$

where c_j is the j'th diagonal element of the matrix $(X^T X)^{-1}$.

Table 6.4: Hypothesis Test for Two sample Gaussian Model

Multinomial Models and Goodness of Fit Tests

Multinomial Distribution's Joint Probability Function

$$f(y_1, y_2, \dots, y_k; \theta_1, \theta_2, \dots, \theta_k) = \frac{n!}{y_1! y_2! \cdots y_k!} \theta_1^{y_1} \theta_2^{y_2} \cdots \theta_k^{y_k} \text{ where } y_j = 0, 1, \dots \text{ and } \sum_{j=1}^k y_j = n.$$

Likelihood Function

$$L(\theta_1, \theta_2, \dots, \theta_k) = \frac{n!}{y_1! y_2! \cdots y_k!} \theta_1^{y_1} \theta_2^{y_2} \cdots \theta_k^{y_k} \quad \text{or more simply} \quad L(\theta) = \prod_{j=1}^k \theta_j^{y_j}$$

Maximum Likelihood estimate

 $\hat{ heta}_j = rac{y_j}{n}, \hspace{1em} j = 1,2,\ldots,k$

Test hypothesis

 $H_0: \theta_j = \theta_j(\boldsymbol{\alpha}) \quad \text{for } j = 1, 2, \dots, k$

where $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_p)$ and p < k - 1. In other words, p is equal to the number of parameters that need to be estimated in the model assuming the null hypothesis (7.3).

Expected value

 $E_j = n\theta_j(\tilde{\alpha}) \quad \text{for } j = 1, 2, \dots, k$

Likelihood ratio test Statistic

 $\Lambda = -2 \log \left[\frac{L(\tilde{\theta}_0)}{L(\tilde{\theta})} \right] \quad \text{where } \tilde{\theta}_0 \text{ maximizes } L(\theta) \text{ assuming the null hypothesis (7.3) is true.}$

Let $\tilde{\boldsymbol{\theta}}_0 = (\theta_1(\tilde{\alpha}), \dots, \theta_k(\tilde{\alpha}))$ denote the maximum likelihood estimator of $\boldsymbol{\theta}$ under the null hypothesis $\Lambda = 2\sum_{j=1}^k Y_j \log \left[\frac{\tilde{\theta}_j}{\theta_j(\tilde{\alpha})}\right]$

$$\Lambda = 2\sum_{j=1}^{k} Y_j \log\left(\frac{Y_j}{E_j}\right) \quad \text{observed} : \quad \lambda = 2\sum_{j=1}^{k} y_j \log\left(\frac{y_j}{e_j}\right)$$

Distribution of Multinomial likelihood ratio test statistic

Recall that if heta is a scalar, then $\Lambda(heta_0)$ has approximately a $\chi^2(1)$ distribution for large n if $H_0: heta= heta_0$ is true.

If θ is a vector, then $\Lambda(\theta_0)$ still has approximately a χ^2 distribution for large n if $H_0: \theta = \theta_0$ is true, but the degrees of freedom change.

The degrees of freedom in the multiparameter case depend on both how many parameters are unknown in the original model, and how many parameters must be estimated under the null hypothesis.

P-value

If *n* is large and H_0 is true then the distribution of Λ is approximately $\chi^2 (k - 1 - p)$.

This enables us to compute p - values from observed data by using the approximation

$$\underline{p-value} = P(\Lambda \ge \lambda; H_0) \approx P(W \ge \lambda) \quad \text{where } W \sim \chi^2 (k-1-p) \qquad \qquad \checkmark J J 5$$

This approximation is accurate when n is large and none of the θ_j 's is too small. In particular, the expected frequencies determined assuming H_0 is true should all be at least 5 to use the Chi-squared approximation.

Degrees of freedom = number of categories - 1 - number of estimated parameters.

Test of independence to of & (now count - 1) (column count - 1)