Chapter 1: Basic Principles of Enumeration

Chapter 2: The Idea of Generating Series

$$\frac{1}{(1-x)^t} = \sum_{n=0}^{\infty} \binom{n+t-1}{t-1} x^n.$$

Proposition 2.7. Let A be a set with a weight function $\omega : A \to \mathbb{N}$, and let

$$\Phi_{\mathcal{A}}(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n.$$

For every $n \in \mathbb{N}$, the number of elements of \mathcal{A} of weight n is $a_n = |\mathcal{A}_n|$.

Lemma 2.10 (The Sum Lemma.). *Let* A and B be disjoint sets, so that $A \cap B = \emptyset$. Assume that $\omega : (A \cup B) \to \mathbb{N}$ is a weight function on the union of A and B. We may regard ω as a weight function on each of A or B separately (by restriction). Under these conditions,

$$\Phi_{\mathcal{A}\cup\mathcal{B}}(x) = \Phi_{\mathcal{A}}(x) + \Phi_{\mathcal{B}}(x).$$

Lemma 2.11 (The Infinite Sum Lemma.). Let A_0 , A_1 , A_2 ,... be pairwise disjoint sets (so that $A_i \cap A_j = \emptyset$ if $i \neq j$), and let $B = \bigcup_{j=0}^{\infty} A_j$. Assume that $\omega : B \to \mathbb{N}$ is a weight function. We may regard ω as a weight function on each of the sets A_j separately (by restriction). Under these conditions,

$$\Phi_{\mathcal{B}}(x) = \sum_{j=0}^{\infty} \Phi_{\mathcal{A}_j}(x).$$

Lemma 2.12 (The Product Lemma.). Let A and B be sets with weight functions $\omega : A \to \mathbb{N}$ and $\nu : B \to \mathbb{N}$, respectively. Define $\eta : A \times B \to \mathbb{N}$ by putting $\eta(\alpha, \beta) = \omega(\alpha) + \nu(\beta)$ for all $(\alpha, \beta) \in A \times B$. Then η is a weight function on $A \times B$, and

 $\Phi^\eta_{\mathcal{A}\times\mathcal{B}}(x)=\Phi^\omega_{\mathcal{A}}(x)\cdot\Phi^\nu_{\mathcal{B}}(x).$

Chapter 3: Binary Strings

Lemma 3.9 (Unambiguous Expression). Let R and S be unambiguous expressions producing the sets \Re and S, respectively.

- The expressions ε and 0 and 1 are unambiguous.
- The expression $\mathbb{R} \cup S$ is unambiguous if and only if $\Re \cap S = \emptyset$, so that $\Re \cup S$ is a disjoint union of sets.
- The expression RS is unambiguous if and only if there is a bijection RS ⇒ R×S between the concatenation product RS and the Cartesian product R×S. In other words, for every string α ∈ RS there is exactly one way to write α = ρσ with ρ ∈ R and σ ∈ S.
- The expression R^{*} is unambiguous if and only if each of the concatenation products R^k is unambiguous and the union ∪[∞]_{k=0} R^k is a disjoint union of sets.

Theorem 3.13. Let R be a regular expression producing the rational language R and leading to the rational function R(x). If R is an unambiguous expression for R then $R(x) = \Phi_{R}(x)$, the generating series for R with respect to length.

Proposition 3.17 (Block Decompositions.). The regular expressions

 $0^*(1^*10^*0)^*1^*$ and $1^*(0^*01^*1)^*0^*$

are unambiguous expressions for the set $\{0,1\}^*$ of all binary strings. They produce each binary string block by block.

Taylor Series	(Maclaurin	Series)

$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	R = 1
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$R = \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$R = \infty$
$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$R = \infty$

Theorem 1.9. For any $n \ge 0$ and $t \ge 1$, the number of *n*-element multisets with elements of *t* types is

$$\binom{n+t-1}{t-1}$$

Theorem 1.15 (Inclusion/Exclusion). Let $A_1, A_2, ..., A_m$ be finite sets. Then

$$|A_1 \cup A_2 \cup \dots \cup A_m| = \sum_{\emptyset \neq S \subseteq \{1,\dots,m\}} (-1)^{|S|-1} |A_S|.$$

Proposition 1.11. Let $f : A \to B$ and $g : B \to A$ be functions between two sets A and B. Assume the following.

• For all $a \in A$, g(f(a)) = a.

IA

• For all $b \in \mathcal{B}$, f(g(b)) = b.

Then both f and g are bijections. Moreover, for $a \in A$ and $b \in B$, we have f(a) = b if and only if g(b) = a.

Lemma 2.13. Let \mathcal{A} be a set with weight function $\omega : \mathcal{A} \to \mathbb{N}$, and define \mathcal{A}^* and $\omega^* : \mathcal{A}^* \to \mathbb{N}$ as above. Then ω^* is a weight function on \mathcal{A}^* if and only if there are no elements in \mathcal{A} of weight zero (that is, $\mathcal{A}_0 = \emptyset$).

Lemma 2.14 (The String Lemma.). Let A be a set with a weight function $\omega : A \to \mathbb{N}$ such that there are no elements of A of weight zero. Then

$$\Phi_{\mathcal{A}^*}(x) = \frac{1}{1 - \Phi_{\mathcal{A}}(x)}$$

Theorem 2.17. Let $P = \{1, 2, 3, ...\}$ be the set of positive integers.

(a) The set C of all compositions is C = P*.
(b) The generating series for C with respect to size is

$$\Phi_{\mathfrak{C}}(x) = 1 + \frac{x}{1 - 2x}$$

(c) For each $n \in \mathbb{N}$, the number of compositions of size n is

$$|\mathcal{C}_n| = \begin{cases} 1 & \text{if } n = 0, \\ 2^{n-1} & \text{if } n \ge 1. \end{cases}$$

1.

Lemma 2.25. For any nonempty set T,

$$\sum_{\emptyset \neq S \subset T} (-1)^{|S|-1} =$$

Theorem 2.26 (Inclusion/Exclusion). Let A_1, A_2, \ldots, A_m be finite sets. Then

$$|A_1 \cup \dots \cup A_m| = \sum_{\emptyset \neq S \subseteq \{1, 2, \dots, m\}} (-1)^{|S|-1} |A_S|.$$

Proposition 2.23. Let \mathcal{U} be the set of pairs (n, A) in which $n \in \mathbb{N}$ is a natural number and $A \subseteq \{1, 2, ..., n\}$ is a subset. Let $\mathcal{C} \setminus \{\varepsilon\}$ be the set of nonempty compositions. There is a bijection $\mathcal{U} \rightleftharpoons \mathcal{C} \setminus \{\varepsilon\}$ between these two sets.

Theorem 3.26. Let $\kappa \in \{0,1\}^*$ be a nonempty string of length n, and let $\mathcal{A} = \mathcal{A}_{\kappa}$ be the set of binary strings that avoid κ . Let \mathbb{C} be the set of all nonempty suffixes γ of κ such that $\kappa \gamma = \eta \kappa$ for some nonempty prefix η of κ . Let $C(x) = \sum_{\gamma \in \mathbb{C}} x^{\ell(\gamma)}$. Then

 $A(x) = \frac{1 + C(x)}{(1 - 2x)(1 + C(x)) + x^n}$

Chapter 4: Recurrence Relations

Theorem 4.8. Let $\mathbf{g} = (g_0, g_1, g_2, ...)$ be a sequence of complex numbers, and let $G(x) = \sum_{n=0}^{\infty} g_n x^n$ be the corresponding generating series. The following are equivalent. (a) The sequence \mathbf{g} satisfies a homogeneous linear recurrence relation $g_n + a_1g_{n-1} + \cdots + a_dg_{n-d} = 0$ for all $n \ge N$, with initial conditions g_0, g_1, \dots, g_{N-1} . (b) The series G(x) = P(x)/Q(x) is a quotient of two polynomials. The denominator is $Q(x) = 1 + a_1x + a_2x^2 + \cdots + a_dx^d$ and the numerator is $P(x) = b_0 + b_1x + b_2x^2 + \cdots + b_{N-1}x^{N-1}$, in which $b_k = g_k + a_1g_{k-1} + \cdots + a_dg_{k-d}$ for all $0 \le k \le N - 1$, with the convention that $g_n = 0$ for all n < 0. **Theorem 4.12** (Partial Fractions). Let G(x) = P(x)/Q(x) be a rational

Theorem 4.12 (Partial Fractions). Let G(x) = P(x)/Q(x) be a rational function in which deg $P < \deg Q$ and the constant term of Q(x) is 1. Factor the denominator to obtain its inverse roots:

$$Q(x) = (1 - \lambda_1 x)^{d_1} (1 - \lambda_2 x)^{d_2} \cdots (1 - \lambda_s x)^{d_s}$$

in which $\lambda_1, ..., \lambda_s$ are distinct nonzero complex numbers and $d_1 + \cdots + d_s = d = \deg Q$. Then there are d complex numbers:

 $C_1^{(1)}, C_1^{(2)}, ..., C_1^{(d_1)}; \ C_2^{(1)}, C_2^{(2)}, ..., C_2^{(d_2)}; \ ...; \ C_s^{(1)}, C_s^{(2)}, ..., C_s^{(d_s)}$

(which are uniquely determined) such that

$$G(x) = \frac{P(x)}{Q(x)} = \sum_{i=1}^{s} \sum_{j=1}^{d_s} \frac{C_i^{(j)}}{(1-\lambda_i x)^j}.$$

Part II: Chapter 4: Introduction to Graph Theory

Theorem 4.3.1. For any graph *G* we have $\sum_{v \in V(G)} \deg(v) = 2|E(G)|.$ **Corollary 4.3.2.** The number of vertices of odd degree in a graph is even. **Corollary 4.3.3.** The average degree of a vertex in the graph *G* is

 $\frac{2|E(G)|}{|V(G)|}.$

Theorem 4.6.2. If there is a walk from vertex x to vertex y in G, then there is a path from x to y in G.

Corollary 4.6.3. Let x, y, z be vertices of G. If there is a path from x to y in G and a path from y to z in G, then there is a path from x to z in G.

Theorem 4.6.4. If every vertex in G has degree at least 2, then G contains a cycle.

Chapter 5: Tree

Lemma 5.1.3. If <i>u</i> and <i>v</i> are vertices in a tree <i>T</i> , then there is a unique <i>u</i> , <i>v</i> -path in <i>T</i>	
Lemma 5.1.4. Every edge of a tree <i>T</i> is a bridge.	
Theorem 5.1.5. If <i>T</i> is a tree, then $ E(T) = V(T) - 1$.	

Corollary 5.1.6. If G is a forest with k components, then |E(G)| = |V(G)| - k.

Theorem 5.1.8. A tree with at least two vertices has at least two leaves.

Theorem 5.2.1. A graph *G* is connected if and only if it has a spanning tree. **Corollary 5.2.2.** If *G* is connected, with *p* vertices and q = p - 1 edges, then *G* is a tree. **Theorem 4.18.** Let $\mathbf{g} = (g_0, g_1, g_2, ...)$ be a sequence of complex numbers. The following are equivalent.

- (a) The sequence g satisfies a homogeneous linear recurrence relation (with initial conditions).
- (b) The sequence g satisfies a possibly inhomogeneous linear recurrence relation (with initial conditions) in which the RHS is an eventually

polyexp function.

(c) The generating series $G(x) = \sum_{n=0} g_n x^n$ is a rational function (a quotient of polynomials in x).

(d) The sequence $\mathbf{g} = (g_0, g_1, g_2, ...)$ is an eventually polyexp function.

Definition 4.20. For any complex number $\alpha \in \mathbb{C}$ and nonnegative integer $k \in \mathbb{N}$, the *k*-th binomial coefficient of α is

$$\binom{\alpha}{k} = \frac{1}{k!} (\alpha)(\alpha - 1) \cdots (\alpha - k + 1).$$

Theorem 4.21 (The Binomial Series). For any complex number $\alpha \in \mathbb{C}$,

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^k.$$

Proposition 4.22. $\sqrt{1-4x} = 1-2\sum_{k=1}^{\infty} \frac{1}{k} \binom{2k-2}{k-1} x^k.$

Theorem 4.14. Let $\mathbf{g} = (g_0, g_1, g_2)$ be a sequence of complex numbers, and let $G(x) = \sum_{n=0}^{\infty} g_n x^n$ be the corresponding generating series. Assume that the equivalent conditions of Theorem 4.8 hold, and that

$$G(x) = R(x) + \frac{P(x)}{Q(x)}$$

for some polynomials P(x), Q(x), and R(x) with $\deg P(x) < \deg Q(x)$ and Q(0) = 1. Factor Q(x) to obtain its inverse roots and their multiplicities:

 $Q(x) = (1 - \lambda_1 x)^{d_1} (1 - \lambda_2 x)^{d_2} \cdots (1 - \lambda_s x)^{d_s}.$

Then there are polynomials $p_i(n)$ for $1 \le i \le s$, with $\deg p_i(n) < d_i$, such that for all $n > \deg R(x)$,

 $g_n = p_1(n)\lambda_1^n + p_2(n)\lambda_2^n + \dots + p_s(n)\lambda_s^n.$

Theorem 4.8.2. Let *G* be a graph and let v be a vertex in *G*. If for each vertex w in *G* there is a path from v to w in *G*, then *G* is connected.

Theorem 4.8.5. A graph G is not connected if and only if there exists a proper nonempty subset X of V(G) such that the cut induced by X is empty.

Theorem 4.9.2. Let G be a connected graph. Then G has an Eulerian circuit if and only if every vertex has even degree.

Lemma 4.10.2. If $e = \{x, y\}$ is a bridge of a connected graph *G*, then G - e has precisely two components; furthermore, *x* and *y* are in different components.

Theorem 4.10.3. An edge e is a bridge of a graph G if and only if it is not contained in any cycle of G.

Corollary 4.10.4. If there are two distinct paths from vertex u to vertex v in G, then G contains a cycle.

Theorem 5.2.3. If *T* is a spanning tree of *G* and *e* is an edge not in *T*, then T + e contains exactly one cycle *C*. Moreover, if e' is any edge on *C*, then T + e - e' is also a spanning tree of *G*.

Theorem 5.2.4. If *T* is a spanning tree of *G* and *e* is an edge in *T*, then T - e has 2 components. If e' is in the cut induced by one of the components, then T - e + e' is also a spanning tree of *G*.

Theorem 5.6.1. Prim's algorithm produces a minimum spanning tree for G.

Chapter 7: Planar Graphs

Corollary: The edges of a k-regular bipartice graph can be partitioned into k perfect matchings. Cobollary: A bipartite graph G with m edges and maximum degree d has a matching of site at least $\frac{M}{d}$

 $q \leq 3p - 6.$

 $q \le 2p - 4.$

 $2dd^*$

没讲

Step 2. For each vertex $v \in B \setminus \hat{Y}$ such that there is an edge $\{u, v\}$ with $u \in \hat{X}$, add

Step 3. If Step 2 added no vertex to \hat{Y} , return the maximum matching M and

Step 4. If Step 2 added an unsaturated vertex v to $\hat{Y},$ use pr values to trace an augmenting path from v to an unsaturated element of \hat{X} , use the path to pro-

Step 5. For each vertex $v \in A \setminus \hat{X}$ such that there is an edge $\{u, v\} \in M$ with $u \in \hat{Y}$,

Theorem 8.4.1. (Hall's Theorem) A bipartite graph G with bipartition A, B has a

duce a larger matching M', replace M by M', and go to Step 1.

fined for all $v \in V(G)$.

v to \hat{Y} and set pr(v) = u.

the minimum cover $C = \hat{Y} \cup (A \setminus \hat{X})$, and stop.

add v to \hat{X} and set pr(v) = u. Go to Step 2.