Theorem 1.2. For every $n \geq 1$, the number of lists of an n-element set S is

$$
n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1
$$

Theorem 1.3. For every $n \geq 0$, the number of subsets of an n-element set is 2^{n}.

Theorem 1.4. For $n, k \geq 0$, the number of partial lists of length k of an n-element set is $n(n-1) \cdots(n-k+2)(n-k+1)$.

Theorem 1.5. For $0 \leq k \leq n$, the number of k-element subsets of an n element set is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \text {. Binomial Coefficient }
$$

Chapter 2: The Idea of Generating Series

Theorem 2.2 (The Binomial Theorem). For any natural number $n \in \mathbb{N}$,

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

Theorem 2.4 (The Binomial Series). For any positive integer $t \geq 1$,

$$
\frac{1}{(1-x)^{t}}=\sum_{n=0}^{\infty}\binom{n+t-1}{t-1} x^{n} .
$$

Proposition 2.7. Let \mathcal{A} be a set with a weight function $\omega: \mathcal{A} \rightarrow \mathbb{N}$, and let

$$
\Phi_{\mathcal{A}}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

For every $n \in \mathbb{N}$, the number of elements of \mathcal{A} of weight n is $a_{n}=\left|\mathcal{A}_{n}\right|$.
Lemma 2.10 (The Sum Lemma.). Let \mathcal{A} and \mathcal{B} be disjoint sets, so that $\mathcal{A} \cap \mathcal{B}=\varnothing$. Assume that $\omega:(\mathcal{A} \cup \mathcal{B}) \rightarrow \mathbb{N}$ is a weight function on the union of \mathcal{A} and \mathcal{B}. We may regard ω as a weight function on each of \mathcal{A} or \mathcal{B} separately (by restriction). Under these conditions,

$$
\Phi_{\mathcal{A \cup B}}(x)=\Phi_{\mathcal{A}}(x)+\Phi_{\mathcal{B}}(x) .
$$

Lemma 2.11 (The Infinite Sum Lemma.). Let $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ be pairwise disjoint sets (so that $\mathcal{A}_{i} \cap \mathcal{A}_{j}=\varnothing$ ifi$\ddagger j$), and let $\mathcal{B}=\bigcup_{j=0}^{\infty} \mathcal{A}_{j}$. Assume that $\omega: \mathcal{B} \rightarrow \mathbb{N}$ is a weight function. We may regard ω as a weight function on each of the sets \mathcal{A}_{j} separately (by restriction). Under these conditions,

$$
\Phi_{\mathcal{B}}(x)=\sum_{j=0}^{\infty} \Phi_{\mathcal{A}_{j}}(x) .
$$

Lemma 2.12 (The Product Lemma.). Let \mathcal{A} and \mathcal{B} be sets with weight functions $\omega: \mathcal{A} \rightarrow \mathbb{N}$ and $\nu: \mathcal{B} \rightarrow \mathbb{N}$, respectively. Define $\eta: \mathcal{A} \times \mathcal{B} \rightarrow \mathbb{N}$ by putting $\eta(\alpha, \beta)=\omega(\alpha)+\nu(\beta)$ for all $(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}$. Then η is a weight function on $\mathcal{A} \times \mathcal{B}$, and

$$
\Phi_{\mathcal{A} \times \mathfrak{B}}^{\eta}(x)=\Phi_{\mathcal{A}}^{\omega}(x) \cdot \Phi_{\mathcal{B}}^{\nu}(x) .
$$

Chapter 3: Binary Strings

Lemma 3.9 (Unambiguous Expression). Let R and S be unambiguous expressions producing the sets \mathcal{R} and \mathcal{S}, respectively.

- The expressions ε and 0 and 1 are unambiguous.
- The expression $\mathrm{R} \cup \mathrm{S}$ is unambiguous if and only if $\mathcal{R} \cap \mathcal{S}=\varnothing$, so that $\mathcal{R} \cup \mathcal{S}$ is a disjoint union of sets.
- The expression RS is unambiguous if and only if there is a bijection $\mathcal{R S} \rightleftharpoons \mathcal{R} \times \mathcal{S}$ between the concatenation product $\mathcal{R S}$ and the Cartesian product $\mathcal{R} \times \mathcal{S}$. In other words, for every string $\alpha \in \mathcal{R S}$ there is exactly one way to write $\alpha=\rho \sigma$ with $\rho \in \mathcal{R}$ and $\sigma \in \mathcal{S}$.
- The expression R^{*} is unambiguous if and only if each of the concatenation products R^{k} is unambiguous and the union $\bigcup_{k=0}^{\infty} \mathcal{R}^{k}$ is a disjoint union of sets.

Theorem 3.13. Let R be a regular expression producing the rational language \mathcal{R} and leading to the rational function $R(x)$. If R is an unambiguous expression for \mathcal{R} then $R(x)=\Phi_{\mathcal{R}}(x)$, the generating series for \mathcal{R} with respect to length.

Proposition 3.17 (Block Decompositions.). The regular expressions

$$
0^{*}\left(1^{*} 10^{*} 0\right)^{*} 1^{*} \text { and } 1^{*}\left(0^{*} 01^{*} 1\right)^{*} 0^{*}
$$

are unambiguous expressions for the set $\{0,1\}^{*}$ of all binary strings. They produce each binary string block by block.

Taylor Series (Maclaurin Series)

$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$	$R=1$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$	$R=\infty$
$\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$	$R=\infty$
$\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$	$R=\infty$

Theorem 1.9. For any $n \geq 0$ and $t \geq 1$, the number of n-element multisets with elements of types is

$$
\binom{n+t-1}{t-1} .
$$

Theorem 1.15 (Inclusion/Exclusion). Let $A_{1}, A_{2}, \ldots, A_{m}$ be finite sets. Then

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{m}\right|=\sum_{\varnothing \neq S \subseteq\{1, \ldots, m\}}(-1)^{|S|-1}\left|A_{S}\right| .
$$

Proposition 1.11. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ and $g: \mathcal{B} \rightarrow \mathcal{A}$ be functions between two sets \mathcal{A} and \mathcal{B}. Assume the following.

- For all $a \in \mathcal{A}, g(f(a))=a$.
- For all $b \in \mathcal{B}, f(g(b))=b$.

Then both f and g are bijections. Moreover, for $a \in \mathcal{A}$ and $b \in \mathcal{B}$, we have $f(a)=b$ if and only if $g(b)=a$.

Lemma 2.13. Let \mathcal{A} be a set with weight function $\omega: \mathcal{A} \rightarrow \mathbb{N}$, and define \mathcal{A}^{*} and $\omega^{*}: \mathcal{A}^{*} \rightarrow \mathbb{N}$ as above. Then ω^{*} is a weight function on \mathcal{A}^{*} if and only if there are no elements in \mathcal{A} of weight zero (that is, $\mathcal{A}_{0}=\varnothing$).

Lemma 2.14 (The String Lemma.). Let \mathcal{A} be a set with a weight function $\omega: \mathcal{A} \rightarrow \mathbb{N}$ such that there are no elements of \mathcal{A} of weight zero. Then

$$
\Phi_{\mathcal{A}^{*}}(x)=\frac{1}{1-\Phi_{\mathcal{A}}(x)} .
$$

Theorem 2.17. Let $P=\{1,2,3, \ldots\}$ be the set of positive integers.
(a) The set \mathcal{C} of all compositions is $\mathcal{C}=P^{*}$.
(b) The generating series for C with respect to size is

$$
\Phi_{\mathrm{e}}(x)=1+\frac{x}{1-2 x} .
$$

(c) For each $n \in \mathbb{N}$, the number of compositions of size n is

$$
\left|\mathfrak{C}_{n}\right|=\left\{\begin{aligned}
1 & \text { if } n=0 \\
2^{n-1} & \text { if } n \geq 1
\end{aligned}\right.
$$

Lemma 2.25. For any nonempty set T,

$$
\sum_{\varnothing \neq S \subseteq T}(-1)^{|S|-1}=1 .
$$

Theorem 2.26 (Inclusion/Exclusion). Let $A_{1}, A_{2}, \ldots, A_{m}$ be finite sets. Then

$$
\left|A_{1} \cup \cdots \cup A_{m}\right|=\sum_{\varnothing \neq S \subseteq\{1,2, \ldots, m\}}(-1)^{|S|-1}\left|A_{S}\right| .
$$

Proposition 2.23. Let U be the set of pairs (n, A) in which $n \in \mathbb{N}$ is a natural number and $A \subseteq\{1,2, \ldots, n\}$ is a subset. Let $\mathcal{C} \backslash\{\varepsilon\}$ be the set of nonempty compositions. There is a bijection $u \rightleftharpoons \mathcal{C} \backslash\{\varepsilon\}$ between these two sets.

Theorem 3.26. Let $\kappa \in\{0,1\}^{*}$ be a nonempty string of length n, and let $\mathcal{A}=\mathcal{A}_{\kappa}$ be the set of binary strings that avoid κ. Let \mathcal{C} be the set of all nonempty suffixes γ of κ such that $\kappa \gamma=\eta \kappa$ for some nonempty prefix η of κ. Let $C(x)=\sum_{\gamma \in \mathrm{e}} x^{\ell(\gamma)}$. Then

$$
A(x)=\frac{1+C(x)}{(1-2 x)(1+C(x))+x^{n}} .
$$

Theorem 4.8. Let $\mathbf{g}=\left(g_{0}, g_{1}, g_{2}, \ldots\right)$ be a sequence of complex numbers, and let $G(x)=\sum_{n=0}^{\infty} g_{n} x^{n}$ be the corresponding generating series. The following are equivalent.
(a) The sequence \mathbf{g} satisfies a homogeneous linear recurrence relation

$$
g_{n}+a_{1} g_{n-1}+\cdots+a_{d} g_{n-d}=0 \text { for all } n \geq N,
$$

with initial conditions $g_{0}, g_{1}, \ldots, g_{N-1}$.
(b) The series $G(x)=P(x) / Q(x)$ is a quotient of two polynomials. The denominator is

$$
Q(x)=1+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}
$$

and the numerator is $P(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{N-1} x^{N-1}$, in which

$$
b_{k}=g_{k}+a_{1} g_{k-1}+\cdots+a_{d} g_{k-d}
$$

for all $0 \leq k \leq N-1$, with the convention that $g_{n}=0$ for all $n<0$.
Theorem 4.12 (Partial Fractions). Let $G(x)=P(x) / Q(x)$ be a rational function in which $\operatorname{deg} P<\operatorname{deg} Q$ and the constant term of $Q(x)$ is 1 . Factor the denominator to obtain its inverse roots:

$$
Q(x)=\left(1-\lambda_{1} x\right)^{d_{1}}\left(1-\lambda_{2} x\right)^{d_{2}} \cdots\left(1-\lambda_{s} x\right)^{d_{s}}
$$

in which $\lambda_{1}, \ldots, \lambda_{s}$ are distinct nonzero complex numbers and $d_{1}+\cdots+d_{s}=$ $d=\operatorname{deg} Q$. Then there are d complex numbers:
$C_{1}^{(1)}, C_{1}^{(2)}, \ldots, C_{1}^{\left(d_{1}\right)} ; C_{2}^{(1)}, C_{2}^{(2)}, \ldots, C_{2}^{\left(d_{2}\right)} ; \ldots ; C_{s}^{(1)}, C_{s}^{(2)}, \ldots, C_{s}^{\left(d_{s}\right)}$
(which are uniquely determined) such that

$$
G(x)=\frac{P(x)}{Q(x)}=\sum_{i=1}^{s} \sum_{j=1}^{d_{s}} \frac{C_{i}^{(j)}}{\left(1-\lambda_{i} x\right)^{j}} .
$$

Part II: Chapter 4: Introduction to Graph Theory
Theorem 4.3.1. For any graph G we have
$\sum_{v \in V(G)} \operatorname{deg}(\nu)=2|E(G)|$.
Corollary 4.3.2. The number of vertices of odd degree in a graph is even.
Corollary 4.3.3. The average degree of a vertex in the graph G is
$\frac{2|E(G)|}{|V(G)|}$.

[^0]
Chapter 5: Tree

[^1]Theorem 4.18. Let $\mathbf{g}=\left(g_{0}, g_{1}, g_{2}, \ldots\right)$ be a sequence of complex numbers. The following are equivalent.
(a) The sequence g satisfies a homogeneous linear recurrence relation (with initial conditions).
(b) The sequence \mathbf{g} satisfies a possibly inhomogeneous linear recurrence relation (with initial conditions) in which the RHS is an eventually polyexp function.
(c) The generating series $G(x)=\sum_{n=0} g_{n} x^{n}$ is a rational function (a quotient of polynomials in x).
(d) The sequence $\mathbf{g}=\left(g_{0}, g_{1}, g_{2}, \ldots\right)$ is an eventually polyexp function.

Definition 4.20. For any complex number $\alpha \in \mathbb{C}$ and nonnegative integer $k \in \mathbb{N}$, the k-th binomial coefficient of α is

$$
\binom{\alpha}{k}=\frac{1}{k!}(\alpha)(\alpha-1) \cdots(\alpha-k+1) .
$$

Theorem 4.21 (The Binomial Series). For any complex number $\alpha \in \mathbb{C}$,

$$
(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k} .
$$

Proposition 4.22. $\sqrt{1-4 x}=1-2 \sum_{k=1}^{\infty} \frac{1}{k}\binom{2 k-2}{k-1} x^{k}$.
Theorem 4.14. Let $\mathbf{g}=\left(g_{0}, g_{1}, g_{2}\right)$ be a sequence of complex numbers, and let $G(x)=\sum_{n=0}^{\infty} g_{n} x^{n}$ be the corresponding generating series. Assume that the equivalent conditions of Theorem 4.8 hold, and that

$$
G(x)=R(x)+\frac{P(x)}{Q(x)}
$$

for some polynomials $P(x), Q(x)$, and $R(x)$ with $\operatorname{deg} P(x)<\operatorname{deg} Q(x)$ and $Q(0)=1$. Factor $Q(x)$ to obtain its inverse roots and their multiplicities:

$$
Q(x)=\left(1-\lambda_{1} x\right)^{d_{1}}\left(1-\lambda_{2} x\right)^{d_{2}} \cdots\left(1-\lambda_{s} x\right)^{d_{s}} .
$$

Then there are polynomials $p_{i}(n)$ for $1 \leq i \leq s$, with $\operatorname{deg} p_{i}(n)<d_{i}$, such that for all $n>\operatorname{deg} R(x)$,

$$
g_{n}=p_{1}(n) \lambda_{1}^{n}+p_{2}(n) \lambda_{2}^{n}+\cdots+p_{s}(n) \lambda_{s}^{n} .
$$

Theorem 4.8.2. Let G be a graph and let v be a vertex in G. If for each vertex w in G there is a path from ν to w in G, then G is connected.

Theorem 4.8.5. A graph G is not connected if and only if there exists a proper nonempty subset X of $V(G)$ such that the cut induced by X is empty.

Theorem 4.9.2. Let G be a connected graph. Then G has an Eulerian circuit if and only if every vertex has even degree.

Lemma 4.10.2. If $e=\{x, y\}$ is a bridge of a connected graph G, then $G-e$ has precisely two components; furthermore, x and y are in different components.

Theorem 4.10.3. An edge e is a bridge of a graph G if and only if it is not contained in any cycle of G.

Corollary 4.10.4. If there are two distinct paths from vertex u to vertex v in G, then G contains a cycle.

```
Cordlay
    OG is comnected OS G has no Cydts. OS G has ntedges
    Nou: (O+() is by definition. }O+()\mathrm{ is by conllary. (S)+() we leave os an exercise.
```

Theorem 5.2.3. If T is a spanning tree of G and e is an edge not in T, then $T+e$ contains exactly one cycle C. Moreover, if e^{\prime} is any edge on C, then $T+e-e^{\prime}$ is also a spanning tree of G.
Theorem 5.2.4. If T is a spanning tree of G and e is an edge in T, then $T-e$ has 2 components. If e^{\prime} is in the cut induced by one of the components, then $T-e+e^{\prime}$ is also a spanning tree of G.

Chapter 7: Planar Graphs

Theorem 7.1.2. If we have a planar embedding of a connected grap faces f_{1}, \ldots, f_{s}, then $\sum_{i=1}^{s} \operatorname{deg}\left(f_{i}\right)=2\|E(G)\|$ Faceshaking		

Jordan Curve Theorem:
 Every planar embedding of s cycle separates the plane into two parts, one on inside, one on the outside.

Theorem 7.2.1. (Euler's Formula) Let G be a connected graph with p vertices and q edges. If G has a planar embedding with f faces, then

$$
p-q+f=2
$$

Theorem 7.3.1. A graph is planar if and only if it can be drawn on the surface of a sphere.
Theorem 7.4.1. There are exactly five platonic graphs.

(a)

(c)
(b)

(d)

(e)

Figure 7.9: (a) the tetrahedron; (b) the octahedron; (c) the cube;(d) the icosahedron; (e) the dodecahedron

Chapter 8: Matchings

 matching is the minimum size of a cover.
Let X_{0} be the set of vertices in A not saturated by M and let Z denote the
set of vertices in G that are joined by to a vertex in X_{0} by an alternating path. If
$v \in Z$ we use $P(v)$ to denote an alternating path that joins v to X_{0}. Now define:
(a) $X=A \cap Z$.
(b) $Y=B \cap Z$.
Lemma 8.3.2. Let M be a matching of bipartite graph G with bipartition A, B,
(a) There is no edge of G from X to $B \backslash Y$;
(b) $C=Y \cup(A \backslash X)$ is a cover of G;
(c) There is no edge of M from Y to $A \backslash X$;
(d) $|M|=|C|-|U|$ where U is the set of unsaturated vertices in Y;
(e) There is an augmenting path to each vertex in U.

Bipartite matching algorithm

Step 0 . Let M be any matching of G
Step 1. Set $\hat{X}=\{\nu \in A: v$ is unsaturated $\}$, set $\hat{Y}=\varnothing$, and set $\operatorname{pr}(\nu)$ to be undefined for all $v \in V(G)$.
Step 2 . For each vertex $v \in B \backslash \hat{Y}$ such that there is an edge $\{u, v\}$ with $u \in \hat{X}$, add v to \hat{Y} and set $\operatorname{pr}(v)=u$.
Step 3. If Step 2 added no vertex to \hat{Y}, return the maximum matching M and the minimum cover $C=\hat{Y} \cup(A \backslash \hat{X})$, and stop.
Step 4. If Step 2 added an unsaturated vertex v to \hat{Y}, use pr values to trace an augmenting path from v to an unsaturated element of \hat{X}, use the path to produce a larger matching M^{\prime}, replace M by M^{\prime}, and go to Step 1 .
Step 5. For each vertex $v \in A \backslash \hat{X}$ such that there is an edge $\{u, v\} \in M$ with $u \in \hat{Y}$, add v to \hat{X} and set $\operatorname{pr}(\nu)=u$. Go to Step 2 .

Theorem 8.4.1. (Hall's Theorem) A bipartite graph G with bipartition A, B has a matching saturating every vertex in A, if and only if every subset D of A satisfies $|N(D)| \geq|D|$.

Corollary 8.6.1. A bipartite graph G with bipartition A, B has a perfect matching if and only if $|A|=|B|$ and every subset D of A satisfies

$$
|N(D)| \geq|D|
$$

Theorem 8.6.2. If G is a k-regular bipartite graph with $k \geq 1$, then G has a perfect matching.

Theorem 8.7.1. A bipartite graph with maximum degree Δ has an edge Δ-colouring.
Lemma 8.7.2. Let G be a bipartite graph having at least one edge. Then G has a matching saturating each vertex of maximum degree.

Theorem 8.8.1. Let G be a graph with q edges, and suppose k, m are positive integers such that
(a) G has an edge k-colouring;
(b) $q \leq k m$.

Then G has an edge k-colouring in which every colour is used at most m times.
Corollary 8.8.2. In a bipartite graph G, there is an edge k-colouring in which each colour is used at most m times if and only if
(a) $\Delta \leq k$, and
(b) $q \leq k m$.

[^0]: Theorem 4.6.2. If there is a walk from vertex x to vertex y in G, then there is a path from x to y in G.
 Corollary 4.6.3. Let x, y, z be vertices of G. If there is a path from x to y in G and a path from y to z in G, then there is a path from x to z in G.

 Theorem 4.6.4. If every vertex in G has degree at least 2 , then G contains a cycle.

[^1]: Theorem 5.2.1. A graph G is connected if and only if it has a spanning tree. Corollary 5.2.2. If G is connected, with p vertices and $q=p-1$ edges, then G is a tree.

