1.2 - Riemann Sums and the Definite Integral

DEFINITION Riemann Sum DEFINITION Regular n-Partition
o Given a bounded function f on [a, b], a partition P Given an interval [a, b] and an n € N, the regular n—partition of [a, b] is the partition
Whot it deed b P®™ with
S < << <l << <ty <t =
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of [a,b], and a set {cy, s, . .., c,} where ¢; € [ti_y, 1], then a Riemann sum for f with
respect to P is a sum of the form each il hos s cregpon 04.? of [a, b] where each subinterval has the same length At; = ”n;“.
P points | \
X Area under the curve that are
Ak, %4, BN estimated with these green S = Z flepAs,.
Ly 4‘ rectangle. =
DEFINITION  Left-hand Riemann Sum DEFINITION  Right-hand Riemann Sum
The left-hand Riemann sum for f with respect to the partition P is the Riemann sum The iéfh"h“"d Riemann &40 for f with [ESEECHO the partition P is the Riemann S
L obtained from P by choosing c; to be #;_;, the left-hand endpoint of [#,_;, . That is R obtained from P by choosing c; to be #;, the right-hand endpoint of [#,_;, #;]. That is
. n
L= fti)As R= Y fa)As.
=1 il
If P™ is the regular n-partition, we denote the left-hand Riemann sum by If P™ is the regular n-partition, we denote the right-hand Riemann sum by
n n b —a z
L,= ; F DAy = Z; fl)— R, = ;:f(ti)Ati =
n
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DEFINITION Definite Integral JREM 1  Integrability Theorem for Continuous Functions

We say that a bounded function f is integrable on [a,b] if there exists a unique
number / € R such that if whenever {P,} is a sequence of partitions with|lim ||P,|| = 0

and {S ,} is any sequence of Riemann sums associated with the P,’s, we have

lim S, =1.
n—eo

In this case, we call / the integral of f over [a, b] and denote it by?

ff(t) dr

The points a and b are called the limits of integration and the function f(¢) is called
the integrand. The variable ¢ is called the variable of integration.

b integrand
limits of
integration | J‘ fv) dt o
a variable o
integration
SR

Definite Integral

NOTE

The variable of integration is sometimes called a dummy variable in the sense that
if we were to replace #’s by x’s everywhere, we would not change the value of the

integral. b b <
& Thatis: J(md;: [f{t)ul-b =fb1’(@)c@»
a a a

Because if this gap (p) is not going to

'éé% { t‘! / ;‘ %‘ 4 (4 [% 4 g% éﬂ 0, we will never be able to estimate the
area.

Let f be continuous on [a, b]. Then f is integrable on [a, b]. Moreover,
ﬁf(t) dt=1im§S,
; nooo

Sy = i flenAt;
=1

where

is any Riemann sum associated with the regular n-partitions. In particular,

ff(t) dt = lim R, = lim Zf(t,-)b_—a <+ Rfdwf hoel ona-
. e e £

n

. G b-a
f f@dt=limL, = nlgg;f(t,-,,) =

Let's examine a “nite” chore: one where the
REMARK P« ?tion is regviar and where we just pick he
Ci's 4o be +he right-hand endpoints!

This theorem also holds if f is bounded and has finitely many discontinuities on
[a, b]. The proof of this theorem is beyond the scope of this course. <

1.3 - Properties of the Definite Integral

THEOREM 2 Properties of Integrals

Assume that f and g are integrable on the interval [a, b]. Then:

i) ForanyceR, [cf@di=c[ f@)dr. Fetor ot reat mumbeme.

i) [ o) de= [0 dt+ [ 50) dt. Lokt of s0m = Sew of itgrae

i) Ifm < f() < M for allt € [a,b], then m(b - @) < [ f(¢) di < M(b— a).

iv) If0 < f(¢) for all ¢ € [a, b], then 0 < fab f(@) dr. S/?colw{ Cese a7’ i)
v) Ifg(t) < f(o) forall 1 € [a,b], then [ g(t) dr < [ f(t) d.
vi) The function |f] is integrable on [a, b] and | Lb f@®dt|< fa : | f(® | dt.

DEFINITION j:f(t) dt [ldentical Limits of Integration] /f/tbM /7’”}79"4"%

Let f(¢) be defined at ¢ = a. Then we define

fa f®dt=0.

DEFINITION  [“f()dt [Switching the Limits of Integration] _f/fyre /)raparHr‘%

Let f be integrable on the interval [a, b] where a < b. Then we define

a b
f f@®dt= —f f@adt.
b a

THEOREM 3

Integrals over Subintervals /[, /Jm/vrf'ff%

Assume that f is integrable on an interval / containing a, b and c. Then

fJ fodt= f f@dt + fb f@dt.

K C does ot nees 40 be betueen a&b!



In general, if f is a continuous function on the interval [a, b], then

represents the area of the region under the graph of f that lies above the
x-axis between x = a and x = b minus the area of the region above the graph
of f that lies below the x-axis between x = a and x = b.

j‘b f(x) dx

DEFINITION Average Value of f

If f is continuous on [a, b], the average value of f on [a, b] is defined as

1
E f f@) dt

4 - The Average Value of a Function

THEOREM 4  Average Value Theorem (Mean Value Theorem for Integrals)

. . S Note +hat +hs the: hotds evenrs b
Assume that f is continuous on [a,b]. siee oot (o, J:Z"‘_'(‘ A{V:' “
a—bf,, ap f., i *)

Then there exists a < ¢ < b such that = f,, 4 Crxdc .

&= f fyde
=

1.5/6 - The Fundamental Theorem of Calculus

THEOREM 5

Fundamental Theorem of Calculus (Part 1) [FTC1]
Assume that f is continuous on an open interval I containing a point a. Let
one "f Ao a,ﬂ,—id&riwﬁml ‘
G(x) = f f@dt.
Then G(x) is differentiable at each x € I and

G'(®) = ().

Equivalently,

60 =2 [ oo,

The COllection of all antiderivatives o€ Fex) 15

TnoePnity  infograd
denoted by /‘,FM,,IXI and (fpodx=Fb)+c f

DEFINITION Antiderivative
Given a function f, an antiderivative is a function F such that
F'(x) = f(»).
If F’(x) = f(x) for all x in an interval I, we say that F is an antiderivative for f on I.
Integrand Antiderivative
xn+1
f(x)=x" wheren # -1 [xrdx= +C
n+1
1 1
f®)=- [=dx=I(x])+C
X X
f(x)=¢€* fe"dx=e"+C

f(x) = sin(x)

f sin(x) dx = —cos(x) + C

f(x) = cos(x)

f cos(x)dx = sin(x) + C

f(x) = sec?(x)

[ sec?(x) dx = tan(x) + C

1 1
HEIL e f Tz dx = arctan(x) + C
1 .
f(x) = ﬁ f \/1—_—)62 dx = arcsin(x) + C
-1 -1
fx) = ﬁ f ﬁ dx = arccos(x) + C

f(x) = sec(x) tan(x)

f sec(x) tan(x) dx = sec(x) + C

f@x)=a

X

a
In(a)

+C

wherea >0anda # 1 fa"dx:

NOTE

Calculus (Part 1) can be written as

d X

= [ roa=rw

X oL
This equation roughly states that if you first integrate f and then differentiate the
result, you will return back to the original function f. <

THEOREM 6

Extended Version of the Fundamental Theorem of Calculus/ Leibriz Tormula

Assume that f is continuous and that g and 4 are differentiable. Let

(x)
H(x) = f f(®adtr.

8(x)

Then H(x) is differentiable and

H'(x) = f(h(x))h'(x) - f(g(x)g’ (x)-

THEOREM 7 | Power Rule for Antiderivatives
If @ # -1, then
a+1
f Xdx=—+C.
a+1
THEOREM 8 | Fundamental Theorem of Calculus (Part 2) [FTC2]

Assume that f is continuous and that F is any antiderivative of f.
Then
ff(t)dt = F(b) - F(a).

I‘Ji o Junchion e emhimens Mo te hoy o achivbrivebie

We will now introduce the following notation to use in evaluating integrals. We
write

F(x) |b = F(b) - F(a)

to indicate that the value of the antiderivative F evaluated at b minus the value of the
antiderivative F evaluated at a.

1.7 - Change of Variables

THEOREM 9 | Change of Variables

Assume that g’(x) is continuous on [a, b] and f(u) is continuous on g([a, b)),
then

= ()
f fg(x)g’'(x)dx = @) du.

= u=g(a)




Trigonometric Substitution 2.1

Sometimes, Changing X into a trig function can simplify an integral:

Summary of Inverse Trigonometric Substitutions

So that the steps are invertable

Range for u

Class of Integrand Integral Trig Substitution Trig Identity
Va? — b2x2 f Va2 —b2x2dx | bx =asin(u) | sin’(x) + cos?(x) = 1
Va? + b2x? f Va? + b2x2dx | bx=atan(u) | sec’(x)—1 = tan’(x)
b2x? — a? f Vb2x2 —atdx | bx=asec(u) |sec’(x)—1 = tan’(x)
Example 1:
T ar et = =+V3tan6,dz = V3 sec® do
Vai+3

V3tan6 - /3 sec’6
VianZ + 1

3 tan 6 - sec «9

\/tanZQ—l—
/tan@ sec? 70
\/_ Vsec? 6

_ 3/
V3
3

= —— [ tan® - sec 6db
\/§/

— /3 secl+ c

do

tan@ - sec’ 6
an SeC d(9

sec 6

r24+3+c

tanf =

( secd > 0

\’

v /

73

Var+3

e

here )

( how we swich back o x)



Example II:

1
——dx
/ V1 — 422

S

- / s
om0
/ sin 9d0
= / csc 0do

—1In (Jesc + cot 0]) + ¢

NDW ffom xr = s11'219

0, Wwe 35&

Example II:

/
D) axr

We )mv@ —72—T<0<g , So

—In(|csc@+ cotd|) +c=

B 1
_/(x+1)2,/(x+1)2—2

V2 secHtan6

d9
2sec? B/2sec? 0 —

sec.d tanﬂ

l_e*, (x+1) =v2sech

= = 0
2. \/§ / sec®0v/sec? f—1"

-

1 1
N §/Se09d9
S 0do
= 2/008

sin 6

2

o2

2(x+1)

% ‘Formull’/k .

we could J@t smﬁ—f

\’rom ’rrlﬂfzj\_e we 35& i cscl =

51119 20 4,4

cosf >0

Final answer

we wonk fo cwtle/f?u Ve

Vsec2 — 1 = Vtan? 6 = tan

*e
> o

= dr = V2 sec § tan 6d0

\F

C \

e l<nuw its POsH‘\'\& .

Vo' -rs

. (x2+2x)
=@ +22+1-1)

—1

C.sinf =

2%

-1

(x+1)* -

r+1

V2



I I’Tteg I"ath n by Pa rtS 2 . 2 The Integration by Parts Formula

DEFINITION The Integration by Parts Formula / udv = uv — / vdu

f f(x)g'(x)dx = f(x)g(x) — f f'(x)g(x)dx. Reverse product rule

Strategy:
 When integrating the product of two functions, pick one to integrate

(call it dv), and one to differentiate (call it u).

° | inverse trig. functions
L: logarithmic functions
° A: trig. functions
T: trig. functions
E: exponential functions

Example I:

(& 1 3
/ 22 n zdx ldﬁ w=1Inz,dv=2de. So du=—dz,v= T
1 xXr

3
23 -Inz |© /6 21
= — — - —dx
3 1 1 3
e e

3 2
_z Inxz B x—dx
3 1 3




Example II:

/em Sin xdaj (@t u = sin xT, dv = Gxdl' , So du = cos [L‘d;p, V= ex

Warning:

* if chose u to be the trig function, don’t switch to the
exponential function on the second attempt, it could undo
your work.

_ 3 _ T
So du=—sinz,v=ce".

7

=e"sinw — / e’ cos xdx lef 2 =cosz,dv=e"da

=e'sinx — [ewcosx—/ex(—sinx) dx]

— e(E Sin €T — e(l? COSx — E/ ex Sin a’;da’; E The very same equation we started with, but with something else.

We’ve shown that: I =¢"sinz —e"cosx — 1

. . Don’t forget
2] = e'sinx — e cosx

EI: +C§<

We integrated this function without intergrating anything.

Example llI: We got a algebraic function, and a compositions of two functions.
So we don’t really have a exponential function by itself, so we
need to be careful about what we are choosing here.

2 _
/ P’ dx D@i wu=a> , 50 dr= ;L“ J And in fact, we_should not using integration by parts right away.
xr

S}

I
—
8
joss
®
<
N |
S

N = N = DN =

-edu Now, integration by parts work.  let w = wu,du = du; dv = e"du,v = e"
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8
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®
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<
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THEOREM 1

DEFINITION

THEOREM 2

Integration by Parts

Assume that f and g are such that both f’ and g’ are continuous on an interval
containing a and b. Then

b b
f fg' () dx = f(xg)l, - f f(x)g(x)dx.

Type | Partial Fraction Decomposition

Assume that
_pW)

J(x) 700

where p and ¢ are polynomials such that

1. degree(p(x)) < degree(q(x)) = k,

2. q(x) can be factored into the product of linear terms each with distinct roots.
That is

gx) =alx—a))(x—a))(x—az) - (x —a)

where the g;’s are unique and none of the g;’s are roots of p(x).

Then there exists constants A;, A,, Az, ---, A, such that
1l A A A A
fx)=- e T
alx—a; x—a x-—a X —ay

we say that f admits a Type I Partial Fraction Decomposition.

Integration of Type | Partial Fractions

Assume that f(x) = % admits a Type I Partial Fraction Decomposition of the form

1
f(x)= -

a

- +ooet

Ay Ay Ay
X-a X-—-a x—ap|

Then

1 A A A
ff(x)dx = —[f 1 dx+f 2 dx+--~+f K dx]
a X —a X—ap X — Qg

1
;[A11H(|x—al D+AyIn(| x—ay ) +---+AcIn(f x —ar D] + C




DEFINITION

DEFINITION

Type Il Partial Fraction Decomposition

Assume that
p(x)
q(x)

where p(x) and g(x) are polynomials such that

f(x) =

1. degree(p(x)) < degree(q(x)) = k,

2. g(x) can be factored into the product of linear terms with non-distinct roots.
That is
q(x) = a(x —a)™ (x — a2)"(x — az)™ - - (x —a)™

where at least one of the m;’s is greater than 1.

We say that f admits a Type Il Partial Fraction Decomposition.

In this case, the partial fraction decomposition can be built as follows.

Each expression (x — a;)™ in the factorization of g(x) will contribute m; terms to the
decomposition, one for each power of x — a; from 1 to m;, which when combined
will be of the form

!
p(x) Aj N Aj» Aj3 Ajm,

W) Lix—a; Gap G-ap  Gmayn

The number m; is called the multiplicity of the root a;.

Type lll Partial Fraction Decomposition

Let f(x) = ZE—X be a rational function with degree(p(x)) < degree(q(x)), but g(x)
does not factor into linear terms. We say that f admits a Type III Partial Fraction
Decomposition.

In this case, the partial fraction decomposition can be built as follows:

Suppose that g(x) has an irreducible factor x> + bx + ¢ with multiplicity m. Then this
factor will contribute terms of the form

le+C1 o B2x+C2 o BmX+Cm
X2 +bx+c  (x*+ bx+c)? (x%2 + bx + o)™

to the decomposition.

The linear terms are handled exactly as they were in the previous cases.



Partial Fractions 2.3 .
p(x

Partial fraction are useful for dividing a difficult integral to many simpler integrals, like: / (_)dx
q\xr

If not, use long division first.

Rules to break up fractions:

If the denominator has: Then we write:
1): Distinct linear factors one constant per factor
2): A repeated linear factor one constant per power
3): Distinct irreducible one linear term per factor

quagratic factors

4): repeated irreducible one linear term per power
quadratic factors

1 A B 1 _A B c

(x+1)(a:+2):a:+1+a:+2 xQ(m—l)_$+x2+x—1

one constant per power

_____________ Lineor~ lerm

B+ +7 A B C D Ex+F |
2 =t R S R
2 r+1)°@2+1) = 2w+l (z41) 2741

As long as the power of x is higher in Denominator.

a4+ 7 A B C  DetE FutG
(z—1P°@2+3)7 -1 (2-1)7° (x-1)" 2?+3  (12+3)°

Example I:
Sr 41 ] N dr + 1 _ A . B
/(2x—|—1)(:c—1)x (2I+1)(QE—1) 20+ 1 x—1
We koo 524+1=A(x+1)+ B2z +1)
1 2 Fast way, But it don't work every time.
- / 20 + 1 + v 1dx Idea: sub in some ‘clever value’ of x.

Lt z=1: 6=4(0)+B(3)
6=3B=B=2

1
:éln(2x—|—1)+2ln(w—1)+0

--------------------------------------- Lt z=-3 —g+1:A<——)+B(0)
1
—— 3 3
/aa:+b aln(a:ﬁ—i—b) —§:—§A



Example II:

22 —2x—1

2 =2 —1 B A B Cx+ D

/

(x—1)" (2> +1)

@ @i 1-1 @1 a1

x272x71:A(mfl)($2+1)+B(1:2+1)+(01+D)(171)2

So

You

S

So we 9«17 :

:A(zihrxfxzfl)+B(z2+1)+(CI+D)(I272I+1)
= A2’ + Az — A2’ — A+ Ba? + B+ Ca® — 202° + Co + Da’ — 2Dz + D
=(A+0)a* + (~A+B-2C+D)2> +(A+C -2D)x+B—-A+D
A+c=0
(—A+B-20+D)=1

we 3«17: < (A+C—2D)=-2
(B—A+D)=-1.

can solve the system any way you want.

1
ivvplification yieldlg, !

x? — 22 —1 1 —1 —z+1
5 T = 5 5 dx
(x—1)" (224 1) r—1 (z—-1) x? 41
—T 1
=1 —1 —_— —d
nle =D+ +/x2+1 x+/x2—|—1 :
Tu=a+) 7 oectan
1
zln(a:—l)—}—m — 3 -In (2% + 1) + arctanz + C
/ — d The Integration by Parts Formula / udy = uv — / vdu
——axr
:I;2 + 1 ff(X)g'(X)dX=f(x)g(x)—ff'(x)g(x)dx. Reverse product rule

du 1
(el u=s"+1 so S 9p = du=20dy = dv = — - du
/ dx 20
Integrand
—ZT -z 1 T
'SO 2 1dl’ = : 2_ ~du fG) =" wheren# -1 Jwdr=2—wc
--------------- f&=1 Sdx=In(x)+C
x° + U T ; .
e f)=¢ fzxdxzex_}_c
_ __1 du '/" f(x) = sin(x) [sin(x)dx = = cos(x) + C

N 2U // f(x) = cos(x) fcos(x)dx =sin(x) + C

1

1
—Z | Zdu ¥
2/u "
1

=3 (ju)+C

1
= —§1n(\x2+1|) +C

f(x) = sec’(x) fsecz(x) dx = tan(x) + C

1
W =10 I T3 & = wetan(x) +C
f)= ! i ! dx = arcsin(x) + C
Vi-2 V-2
fx) = ‘/1__7 f‘/% dx = arccos(x) + C

f(x) = sec(x) tan(x) f sec(x) tan(x) dx = sec(x) + C

wherea>0anda # 1 | [a“dx= c

fx)=d"

a .
In(a)

SV\L; ‘OQCL X .



2.4 - Improper Integrals

So far, we have only examined Integrals of continuous, or at least bounded functions.
Let’s see how to deal with a more general collection of functions!
In Particular, we will examine two types:

Type I: Infinite Intervals:
Integrals of the form:

. /;f(a;)dx
. Aoof(:r)dx
> /::f(ﬂc)dx

Type Il: Infinity Discontinuity:

T

1
Example: / Lie. . Theeis o isme of x-o0.

The idea in all cases is to replace the problematic point with a letter and take a limit.

Type |

+ We replace the infinite endpoint with a letter and take a limit.

a . a 0 0 bo
. /Oof(fﬁ)dwzl}ggo/b f(z)dx -[wf(x)dx: im [ f@det lim [ f(@)de

00 b e ) b )
[t [ vertse [ Ttz prfr @i

This is called the
sCavchy Principal
Value’ and itis

something else!

We say that the integral converges if all of the limits exist (and are finite).

The Integral diverges if even one limit DNS (or is +- Infinity.)

Examples:
+ Evaluate the following or show they diverge.

0 L]
1 ot N 11
—dr = lim —dr = lim —— = lim —= + - = ! .
9 T b—o00 9 T b—00 €T b 00 b 2 :2 E So it converges, and evaluate to 1/2.



Type

- Suppose following integral converge: / f(x)dx /wg(x)dw

2): [ 1@+9@dr converges,and [ f@+g@de= [ f@drs [ gw)i
3): If f(@<g(®) forall ©>a  then /Dcf(x)dxg/xg(x)d:r

4) 1 f a<ec< oo ,then/ f(z)dx converges, and /xf(af)dw:/cf(x)dwr/wf(fff)dﬂf

Evaluating integrals in general is hard, and determining if an improper integral converges
may be even harder! However, we do have a way of comparing a difficult integral to a
simpler one (for example, a P-integral.)



DEFINITION

DEFINITION

DEFINITION

Type | Improper Integral Type | Improper Integral

1) Let f be integrable on [a, b] for each a < b. We say that the Type I Improper

Integral
f f(x)dx

lim f(x)dx
boeo ),
exists. In this case, we write

o0 b
f f(x)dx:}}imf f(x)dx.

Otherwise, we say that f“ ~ f(x)dx diverges.

converges if

2

N

Let f be integrable on [b, a] for each b < a. We say that the Type I Improper

Integral
a

f(x)dx

—o0

converges if

exists. In this case, we write

f(x)dx:blim ff(x)dx.
== Jf

—c0

Otherwise, we say that f . J(x) dx diverges.
3

<

Assume that f is integrable on [a, b] for each a,b € R with a < b . We say that
the Type I Improper Integral
f f(x)dx

converges if both fw f(x)dx and f:o f(x) dx converge for some ¢ € R.

In this case, we write

I:f(")d": I;ﬂx)dﬂfcmf(x)dx

Otherwise, we say that f:o f(x)dx diverges.

Absolute Convergence for Type | Improper Integrals
Absolute Convergence for Type | Improper Integrals

Let f be integrable on [a, b) for all b > a. We say that the improper integral
fa f(x)dx converges absolutely if

f | )| d

The Gamma Functions

l"(x):f *letdr.
0

The function I' is called the Gamma function.

converges.

The Gamma Function

For each x € R, define

THEOREM 3

THEOREM 4

THEOREM 5

THEOREM 6

THEOREM 7

p-Test for Type | Improper Integrals -Test for Type | Improper Integral

<1
f —dx
1 X

The improper integral

converges if and only if p > 1.

If p > 1, then

Properties of Type | Improper Integrals
Properties of Type | Improper Integrals
Assume that fa . f(x)dx and j:o g(x) dx both converge.

L [Te f(x) dx converges for each ¢ € R and

fcf(x)dx = cfmf(x)dx.

2 f“ “(f(x) + g(x)) dx converges and

f (F() + g(x)) dx = f f)dx+ f () dx.

3. If f(x) < g(x) for all a < x, then

fm fx)dx < rg(x) dx.

4. If a < ¢ < o, then f(m f(x) dx converges and

ff(x)dx = \L‘(.f(x)dx+‘[mf(x)dx.

The Monotone Convergence Theorem for functions
The Monotone Convergence Theorem for Functions

Assume that f is non-decreasing on [a, o).
1. If {f(x) | x € [a, o)} is bounded above, then lim f(x) exists and
lim f(x) = L = lub({f(x) | x € [, 00)}).

2. If {f(x) | x € [a, o)} is not bounded above, then lim f(x) = co.

Comparison Test for Type | Improper Integrals

Assume that 0 < g(x) < f(x) for all x > a and that both f and g are continuous on
[a, o0).

1. If Lm f(x)dx converges, then so does f:o g(x)dx.

2. 1f [ g(x) dx diverges, then so does [ f(x) dx.

Absolute Convergence Theorem for Improper Integrals

Let f be integrable on [a, b] for all b > a. Then |f] is also integrable on [a, b] for all
b > a. Moreover, if we assume that

f | £ | dx
ﬁwf(x)dx.

In particular, if 0 < IfD(ox)I < g(x) for all x > a, both f and g are integrable on [a, b]
for all b > a, and if L 8(x) dx converges, then so does

ﬁm f(x)dx.

converges, then so does



DEFINITION  Type Il Improper Integral

D

2)

3)

Let f be integrable on [¢, b] for every ¢ € (a, b] with either lim f(x) = oo or
x—at

lim f(x) = —co . We say that the Type II Improper Integral

x—a*

b

f(x)dx

a

converges if

exists. In this case, we write

b
f f(x)dx = lim ff(x)dx.

Otherwise, we say that j:’ f(x)dx diverges.

Let f be integrable on [a, 7] for every ¢ € [a, b) with either lil? f(x) =0 or
x—b~
lir}71_ f(x) = —co . We say that the Type II Improper Integral

j;b fx)dx

lliri! f f()dx

converges if

exists. In this case, we write

b 3
ff(x)dx:[lirzlﬁff(x)dx.

Otherwise, we say that fn b f(x)dx diverges.

If f has an infinite discontinuity at x = ¢ where a < ¢ < b, then we say that the

Type II Improper Integral

jn‘b f(x)dx

¢ b
converges if both f f(x) dx and f f(x) dx converge. In this case, we write

b b
ff(x)dx:ff(x)dx+f f(x) dx.

b
If one or both of these integrals diverge, then we say that f f(x) dx diverges.

THEOREM 8  p-Test for Type Il Improper Integrals

The improper integral
1
1
—dx
o X
converges if and only if p < 1.

If p < 1, then
1
loix:L.
o X! 1-p

Area Between Curves

Let f and g be continuous on [a,b]. Let A be the region bounded by the
graphs of fand g, the line # = a and the line # = b. Then the area of region A
is given by

b
A =f 80— fO 1 dr.
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4.2 - Separable Differential Equations

DEFINITION Separable Differential Equation Definition: Separable Differential Equation

A first-order differentiable equation is separable if there exists functions f = f(x)
and g = g(y) such that the differentiable equation can be written in the form

¥’ = f(x)80).

EXAMPLE 3  Consider the following differentiable equations:

i) y’ = xy” is separable. In this case, f(x) = x and g(y) = y*.
ii) y’ =y is separable. In this case, f(x) = 1 and g(y) = y.

iii) y’ = cos(xy) is not separable since it can not be written in the
formy” = f(x)g(y)-

DEFINITION Constant (Equilibrium) Solution to a Separable Differential Equation

Definition: Constant (Equilibrium) Solution to a Separable Differential Equation

y' = fx)e0)
is a separable differential equation and if y, € R is such that g(y,) = 0, then

é(x) =0

is called a constant or equilibrium solution to the differential equation.

Strategy [ Solving Separable Differential Equations]
Strategy [Solving Separable Differential Equations]

Solving the separable differential equation

y' = f(x)80)

consists of 4 steps.

Step 1:  Determine whether the DE is separable. You may have to

factor the DE to identify f(x) and g(y).

Step 2:  Determine the constant solution(s) by finding all the values y,

such that g(yo) = 0. For each such yj, the constant function
y=y®) =Y
is a solution.

Step 3: If g(y) # 0, integrate both sides of the following equation
1

f 8()

to solve the differential equation implicitly.

dy = ff(x)dx

Step 4:  Solve the implicit equation from Step 3 explicitly for y in terms

of x.

Step 5: [Optional] Check your solution by differentiating y to

deterimine if this derivative is equal to the original DE y’.

Step 4: Find the explicit solutions

Try to solve the implicit equation b
GO)=Fx) +C

for y in terms of x. This will be the explicit solution to the differential equation.
Unfortunately, it is not always easy to solve this equation for y in terms of x.

Solving Separable Differential Equations

There is a simple process to follow to find the solutions to a separable differential
equation y’ = f(x)g(y). The steps are:
Step 1: Identify f(x) and g(y)
Step 2: Find all constant (equilibrium) solutions
Step 3: Find the implicit solution
Step 4: Find the explicit solutions
Step 1: Identify f(x) and g(y)

Often when you are presented with a differential equation, it will not be obvious

Step 2: Find all constant (equilibrium) solutions

Let
Y = f(x)s®)
be a separable DE.

Suppose that g(yy) = 0 for some y,. Then the constant function
¥ =¢(x) =y
is a solution to the separable differential equation since
¢'(x) = 0 = f(x)800) = f(2)g(p(x))
for every x.
Step 3: Find the implicit solution

If y’ = f(x)g(y) is a separable differential equation, when g(y) # 0 we can divide by
8() to get
!
2)

Integrating both sides with respect to x gives
I
&)
However, if we note that y = y(x), we can apply the Change of Variables theorem to
L
—y'(x)dx

the left-hand integral to get
y ’
dx = f
8O 464€9)]

/
®

=f®).

dx:ff(x)dx.

This gives us the formula

1
—d
8 b

f = ff(x) dx

Evaluating these integrals gives us an implicit solution to the differential equation of
the form

G@) = F(x)+ C



4.3 - First-Order Linear Differential Equations

Definition: First-Order Linear Differentiable Equations [FOLDE]
DEFINITION  First-Order Linear Differentiable Equations [FOLDE] EXAMPLE 9 Solve the first-order linear differential equation

A first-order differential equation is said to be linear if it can be written in the form ¥y’ =3xy-3x.

The first step is to rewrite the differential equation so that “g(x)” is alone on the
right-hand side of the equation,

EXAMPLE 8  Consider the following differential equations: ,
y'—=3xy=-3x.

i) The separable differential equation The next step is to multiply both sides of the equation by a nonzero function I = I(x)
to get

y' =3x(y-1) Iy’ =3xIy=-3xI (1)
may be rewritten as The goal is to find the nonzero function I = I(x) such that if we differentiate /(x)y(x)
¥’ =3xy-3x we will get the left-hand side of equation (1). That is,

50 it is also linear. d
2 d@y@) = Iy’ = 3xly
ii) The differentiable equation *

y =2y

is not linear since the term y* is of third degree.

Using the Product Rule we see that

d T
Ay =1Iy" + Iy

<
50 we require that
Iy +I'y=Iy'-3xly (2
Strategy [ Solving First-Order Differential Equations] A close look at equation (2) shows us that we need
Strategy [Solving First-Order Linear Differential Equations] I'=-3x (3)
Solving the first-order linear differential equation Equation (3) is a separable differential equation which we know how to solve.
Since the only constant solution is / = I(x) = 0 and we require a nonzero function,
y = f( x)y + g(x) we proceed to Step 2 of the algorithm for solving separable equations.
‘Write 1
consists of 3 steps. f Sl = f (-3x)dx.
This gives
In(7))= Bese
Step 1:  Determine whether the DE is linear. Write the equation in 2 )
the form Exponentiating shows that
12
y' = f(x)y =g 11|=Cie®
and identify f (x) and 8 (x) where C; = e > 0 and hence that
I= C;e’%)rz
Step 2: Calculate the integrating factor I(x) with I(x) # 0. Solve for 1 e
by using Wil ez 75
I=e f flxydx ‘We only require one such function, so choose C, = 1. Then
: i o _ i
Step 3:  Since I(x) # 0, the solution is I=1(x)=e?".
f g( x) I( x) dx With this choice of 7 we now have an equation of the form
I(x) dia(x)y(x)) = -3xl
X

where I = I(x) = e7*.

Step 4: [Optional] Check your solution by differentiating y.

Integrating both sides of this equation gives us

d
Theorem: Solving First-Order Linear Differential Equations Iy = f(a(l(")yo‘))) dx
THEOREM 1 Solving First-Order Linear Differential Equations _ f _3xi(x) dx
Let f and g be continuous and let
= f—Bxe'%"‘ dx
y' = f)y +g(x)

be a first-order linear differential equation. Then the solutions to this equation are of
the form Let u = 32x? to get that du = —3xdx so dx = 4 which gives

_ [e@I®dx

)

where I(x) = e~ f®dx,

Note: In theory, the method we have just outlined provides us with a means
of solving all first-order linear differential equations. However, in practice this
only works provided that we can perform the required integrations.

f(—SxI(x))dx = f—Sxe%l’gdx
= fe" du

= e'+C

This means i
I(x)y=e2* +C.

Solving for y gives us

1(x)
¥ 4 C
7

= 1+Cet”

where C is an arbitrary constant.

Finally, we can verify this answer by differentiating y to get

y' = Ce%xl(3x)
G -1
= 3xy-3x

which, as we expected, is the original DE that we were trying to solve.



4.4 - |nitial Value Problems

THEOREM 2

EXAMPLE 11

Theorem: Existence and Uniqueness Theorem
for First-Order Linear Differential Equations

Existence and Uniqueness Theorem
for First-Order Linear Differential Equations

Assume that f and g are continuous functions on an interval I. Then for each x, € I
and for all y, € R, the initial value problem

Y’ = f(x)y +g(x)

¥(x0) = yo

has exactly one solution y = ¢(x) on the interval /.

Solve the initial value problem

with y(0) = 1.

Observe that this differential equation is linear since it takes the form

Y = f(x)y + g(x) where f(x) = x and g(x) = 0, so the previous theorem tells us that
there will be a unique solution. However, this differential equation is also separable
since it can be written in the form y’ = f(x)g(y) with f(x) = x and g(y) = y, so we
can use the method developed for separable equations to find the solution.

The only constant solution is y = y(x) = 0 which does not satisfy the initial

conditions. Hence we have 1
f —dy= f xdx.
Yy

This shows that 2
1 ==
n( y ) 2 +C
S0
2
y=Cie~.

We also have that R
1=y(0)=Cie” =C1e® = Cy.

Therefore y = ¢~ is the unique solution to this initial value problem. <

EXAMPLE 12

A Mixing Problem

Assume that a brine containing 30g of salt per litre of water is pumped into a 1000L
tank at a rate of 1 litre per second. The tank initially contains 1000L of fresh water.
It also contains a device that thoroughly mixes its contents. The resulting solution is
simultaneously drained from the tank at a rate of 1 litre per second.

Problem: How much salt will be in the tank at any given time?

Let s(¢) denote the amount of salt in the tank at time ¢. Then s’(¢) is the difference
between the rate at which salt is entering the tank (in the brine) and the rate at which
salt is leaving the tank (in the discharge). Label these riy(f) and rou(?), respectively.
That is,

$7(8) = rin(®) = rou(®.

s(t)

rip(t) ——

Tour()

Salt in Salt out

To find riy(f) we note that the concentration of salt in the brine entering the tank is
constant at 30g per litre. The flow rate is 1L per second and the rate at which the salt
is entering the tank is the product of the concentration and the flow rate. Hence

rul® = 308 x 15 = 308
L s K}

and so the rate at which salt is entering the tank is 30 grams per second.

Calculating r,y(f) is similar. It is the concentration of the discharge times the rate of
flow. The rate of flow is again 1L per second but this time the concentration is not
constant. In fact the concentration of the discharge is the same as that of the tank.

Since the concentration of salt in the tank is %, we get
_ s _ 5@
raa(®) = 7900 % = To00

grams per second. It follows that

LI0N

s'(t)=30- 1000°

This is a first-order linear differential equation with f(r) = — ﬁ and g(¢) = 30.

(Note: It is also a separable DE). To solve the equation as a FOLDE, the integrating
factor I(?) is

I(t) = e ot = gmiw

Using the FOLDE formula
[ eiwar
= e
gives us
[ 30em dr
e

s(t)

30000e @ + C

7
eTm

= 30000 + Ce ™

Since s(0) = 0, we get
0 = 30000 + Ce° = 30000 + C

and hence
C = -30000.

Therefore, at any given time
5(2) = 30000 — 30000¢~ ™0

grams.

Finally, since lim e — 0, observe that
lim () = lim 30000 — 30000¢~ ™% = 30000
sy s

grams. This means that if the system was allowed to continue indefinitely, the
amount of salt in the tank would approach 30000 grams. At that level, the
concentration in the 1000L tank would be 30 grams per litre, which would be the
same as the inflow rate. Therefore, the system is moving towards a stable
equilibrium.



4.6 - Exponential Growth and Decay

It is known that a population of bacteria in an environment with unlimited resources
grows at a rate that is proportional to the size of the population. Therefore, if P(r)
represents the size of the population at time ¢, there is a constant k such that

P’ =kP.

The general solution to this differential equation is given by

where C = P(0) represents the initial population.

P(t) = P(0)e™

- —"c=pPoO

Exponential Growth

From the shape of the graph, it makes sense when we say that the bacteria
population exhibits exponential growth.

Physical considerations generally limit the possible solutions to the equation. In the
case of the bacteria population we will see that if we know the initial population as
well as the size of the population at a one other fixed time, then the exact population
function can be determined.

EXAMPLE 13 Attime ¢ = 0, a bacteria colony’s population is estimated to be 7.5 X 10°. One hour
later, at # = 1, the population has doubled to 1.5 x 10°. How long will it take until
the population reaches 107?

Let P(t) represent the size of the population at time 7. We know that there is a
constant k such that

P’ =kP
SO
P() = Ce"
and C = P(0) = 7.5 x 10°.
We also know that
1.5 % 10° = P(1) = 7.5 x 10%®.
Therefore
p_ 1.5x10°
¢ T TEx10°

To find k, take the natural logarithm of both sides of the equation to get
k =1n(2).
This tells us that the population function is

P(t) = 7.5 x 10°en®¥,

Now that we know the general formula for P(f), to answer the original question we
need to find #, such that

P(ty) = 7.5 x 105 = 107

Therefore,
7
ey - 10
7.5%10°
S0 0
(In(2))fo = In (—7_ o 05)
and ( 7 )
In(=5x
T5X10°
th= ——— =3.74h .
0 Q) 3 ours,

There are many other real world phenomena that behave in a manner similar to the
growth of a bacteria population. In other cases, rather than exponential growth, we
have exponential decay. For example, the rate at which radioactive material breaks
down is proportional to the mass of material present.

Let m(f) denote the mass of a certain radioactive material at time ¢. Then there is a
constant k such that

(fi_’:l =m' =km.
We have
m(f) = CeM

Since the amount of material is decreasing, m’(¢) < 0. But

m’(t) = km(?)

and m(¢) > 0 so it follows that k < 0. Therefore, the graph of m(¢) appears as
follows:

m(f) = Myekt

Exponential Decay

In particular, notice that
lim m(z) = lim Mpe = 0
t—o0 1—o00

since k < 0.

‘We call such a process exponential decay.

half-life of the material. This is the amount of time it would take for one-half of the
material to decay. The half-life is a fundamental characteristic of the material.

Mathematically, if
m(t) = Myet
then 2, is the time at which
M,
m(t;,) = M()ekt'l = —0

Dividing by M, shows that
e = 1

and hence that |
kty, = ln(i) = —In(2).

Therefore, the half-life is given by the formula

Half-life’s formula

EXAMPLE 14  Carbon Dating

All living organisms contain a small amount of radioactive carbon-14. Moreover,
each type of organism has a particular equilibrium ratio of carbon-14 compared to
the stable isotope carbon-12.

‘When an organism dies the equilibrium is no longer maintained since the
radioactive carbon-14 slowly breaks down into carbon-12. It is also known that
carbon-14 breaks down at a rate of 1 part in 8000 per year. This means that after 1
year an initial quantity of 8000 particles will be reduced to 7999. Hence

7999 = m(1) = 8000e®

7999
=m(22).
k "(sooo)

so that

Problem 1: Find the half-life of carbon-14.
From the previous discussion, we know that

e
R Tk



4.7 - Newton’s Law of Cooling

EXAMPLE 15

Newton’s law of cooling states that an object will cool (or warm) at a rate that is
proportional to the difference between the temperature of the object and the ambient
temperature T, of its surroundings. Therefore, if T'(f) denotes the temperature of an
object at time 7, then there is a constant k such that

T'=k(T -T,.

If D = D(t) = T(t) — T,, then
D'=T'=kD

so D satisfies the equation for exponential growth (or decay). We know
D =Cé".

It follows that
T(@)=Ce+T,

where C = D(0) = To ~ T, and Ty = T(0). T,: Intitial temperature
Ta: Ambient temperature
t: time

k: the constant

Therefore,

There are three possible cases.

1. Ty > T,

Physically, this means that the object is originally at a temperature that is
greater than the ambient temperature. This means that the object will be
cooling.

Since T(z) is decreasing
T'=k(T-T, <0.
However, T > T,, so that k < 0.
2. To< T,

In this case, the object is originally at a temperature that is lower than the
ambient temperature. Therefore, the object will be warming.

This time 7'(¢) is increasing so
T'=kT-T,)>0.
Since T < T, it follows again that k < 0.
3. To=T,
Then

T' =k(T-T,)=0 o
. .. Equijlibrium state
so the temperature remains constant. We call this the equilibrium state.

Notice that in all three cases,
Lim 7'(¢) = T,.
-0

Regardless of the initial starting point, if a process always moves towards a
particular equilibrium value, we call this value a stable equilibrium.

A cup of boiling water at 100°C is allowed to cool in a room where the ambient
temperature is 20°C. If after 10 minutes the water has cooled to 70°C, what will be
the temperature after the water has cooled for 25 minutes?

Let T(¢) denote the temperature of the water at time ¢ minutes after cooling
The initial is T = 100°C and the ambient temperature is
T, = 20°C. Newton’s Law of Cooling shows that there is a constant k£ < 0 such that

T@) = (To-TeM+T,
(100 = 20)¢“ + 20
= 80¢"+20

The next step is to determine k. Note that

70 = T(10) = 80¢'% + 20

50 = 80e'%.
Hence,
50
10k =In|—
(o
and
In (2
. @
10
= -0.047

‘We can now evaluate 7'(25) to get that the temperature after 25 minutes is

T(25) = 80e7°%7 420
= 471

degrees Celsius.

~In(2)
n(z)

5544.83 years

R

Problem 2: After a fossil was found research showed that the amount of carbon-14
was 23% of the amount that would have been present at the time of death. How old
was the fossil?

Let M, be the expected amount of carbon-14 in the fossil and let #, be the age of the
fossil. Then the research shows that

(0.23)My = m(ty) = Moe®.

‘We must solve this equation for #. The first step is to recognize that

©23)M, _
0

e = 0.23

This shows that we did not need to find the quantity M, explicitly to solve this
question.

Taking the natural logarithm of both sides of the equation gives
kto = In(0.23)

and hence that

In(0.23)
k

1n(0.23)

In (w)

8000

= 11756years

The diagram summarizes the possible graphs of the temperature function.

k<0

Tﬂ:To

k<0

Newton’s Law of Cooling
T(t) = (To - Ta)ekt +7,



4.8 - Logistic Growth

‘We have seen that a population with unlimited resources grows at a rate that is
proportional to its size. This leads to the differential equation

P’ =kP.

However the assumption that resources will be unlimited is usually unrealistic

n P(t) approaches M, resources will
become more scarce and the growth rate of the population will slow. On the other
hand, when the population is small in comparison to the maximum population
possible, the growth rate will be similar to that of the unrestricted case since there
will be little resource pressure. It is known that such a population satisfies a

differential equation of the form )
L SR M: max population

kP(M - P).! P: current population

This equation means that the rate of growth is proportional to the product of the
current population and the difference from the maximum sustainable population.

Populations of this type are said to satisfy logistic growth and the differential
equation

is called the logistic equation.

The logistic equation need not only model a population. However, in the special
case where we are trying to describe the behavior of a population, we have the
additional constraint that P(z) > 0.

Let Py = P(0) be the initial population at the beginning of a study.

Observe that if the initial population is smaller than M, then the population will be
growing. This means that we would have

0<P' =kP(M-P)

since both P and M — P are positive. As such, we would expect that k > 0.

However, if the initial population exceeds the maximum sustainable population,
then the population would decrease so

0>P' =kP(M-P)
and again we would have k > 0 since P >0and M - P < 0.

A third possible case occurs when the initial population is already at the maximum.
In this case,
P’ =kP(M-P)=0

S0 the population would remain constant This shows that P(f) = M is an

The last case we will consider occurs when Py = 0. In this case, we have that
P'=kP(M-P)=0

which makes sense since there are no parents to produce offspring. Therefore,
P(t) = 0 is also an equilibrium, but its nature is quite different than that of the
equilibrium at P(t) = M.

It follows that in all cases, we may assume that P(¢) > O for all ¢ so that the possible
solutions look as follows:

S~rom
M

. Py =0

t

Logistic Growth

You will notice that as long as Py # 0 we have

This means that P(t) = M is a stable equilibrium. However, since we will never
move towards an equilibrium of P(#) = 0 once there is a nonzero population,
P(t) = 0is called an unstable equilibrium.

So far, we have presented a qualitative solution to the logistic growth problem.
However, since the equation is separable, we can try to solve it algebraically. We
have already observed that P(x) = 0 and P(x) = M are the constant solutions. We

can then try to solve
Strategy [ Solving Separable Differential Equations]:

e L e
fP(M—P) ‘f -

To evaluate [ 717 @P we use partial fractions.
The constants A and B are such that

1 4 5
PM-P) P M-P

or
1 =AM - P) + B(P).

Letting P = 0 gives

1=AM)
S0 .
A=—.
M
Letting P = M, we get
1= B(M)
and again
1
B= W
Therefore
1 11 . 1
P(M-P) M|P M-P
It follows that

1
fP—(M—P)dP = [f dP + —M PdP

= ﬁ[ln(l P)-In(|M-P]+C,

1 [P )
- Mln(IM—PI +C

‘We now have that

1 | P(D) |
1(|M P(t))+C2—kt+C1
Therefore,
| P@) |
Mkt
(l M= P() |) -

where Cj is arbitrary.

This shows that |PO) |

= CeMit
| M—-P@)|

where C = ¢© > 0.

There are two cases to consider.

Case 1: Assume that 0 < P(f) < M. Then

PO PO — CeMm

IM-P@H| M-P@

Solving for P(¢) would give

P(f) (M - P@))CeM™

MCeM — p(r)CeM*

so that
P(t) + P(H)Ce™™ = MCe"™.
We then have
P()(1 + Ce™™) = MCeM*
and finally that
MCeMkt
.E(t) ..... 1+ CeMkt
CeMkt
1+ CeMht

There are two important observations we can make about this solution.

(a) Since C > 0, the denominator is never 0 so the function P(f) is continuous and

CeMkt
“1+com © :

so that
0<Pt)y<M

which agrees with our assumption. ;‘(—



_* (b) Since k > 0, we have that Since we are looking for a population function and so we require P(¢) > 0, we will
) only consider values of ¢ which exceed #,. Therefore, the graph of the population

i . CeMh function is:
=il e e

This shows that the population would eventually approach the maximum

population M but if you went back in time far enough, the population would

' P
C eMkt 1
_ i 1
M T o !
Ny |
1
1
' Py>M
and Mkt :
Ce \
X . _ "
tEI—r:o 80 tgl};lc Ml + CeMkt N M ;
I
I
1
]
1
1
1

s . . : t
be near 0. Both of these limits are consistent with our expectations. fo
If t = 0, then I
Ce® C It is still true that it
Py=P0O)=M =M—. . . Ce
0 limP(t) =limM——————=M.
1+Ce 1+C e e
Solving for C yields and
Py(1+C)=MC .
e lim P(f) = oo.
Py+ PyC =MC =0
EXAMPLE 17 A rumor is circulating around a university campus. A survey revealed that at one
Py = (M - Py)C point only 5% of the students in the school were aware of the rumor. However, since
news on campus spreads quickly, after 10 hours the rumor is known by 10% of the
and ﬁnally that P student body. How long will it take until 30% of the students are aware of the
C= L rumor?
Gl Let r(f) be the fraction of the student body at time ¢ that have heard this rumor. Then
0<r@®<l.
C eMkl
The graph of the function P(f) = M ———— looks as follows:
gap @ 1+ CeMkt
P r'=kr(l1-r)
and so this is a logistic growth model with M = 1. It follows that there is a positive
constant C such that
") = et 0<r(t)<M(1)
M T+Ce
‘We know that at 7(0) = 0.05 so
. C= Ul —@—00526315
f// T1-r70) " 095
P 0= 0
and hence that
t
0.1 = £10)
Logistic Growth | Mg
- 005,10k
Case 2: If P(0) > M, then 1+ asse
lPOI ___ PO _ P _ Therefore 0.005 005
IM-P@®)| M-P@) P-M : 0.1 + 2005 1oe _ 005 1o
095° ~095°
Proceeding in a manner similar to the previous case, we get that there exists a and 0045
positive constant C such that 0.1= (;TSewk'
C eMkz
Pt)=M——. This gives
CeMki — 1 wor_ 0.095
¢ T 0045
Notice that this function has a vertical asymptote when the denominator and
In (2093
CeM _1 =0, k= ) =0.07472
10
Moreover, the function is only positive if Finally, we want to find #, such that
Cel™ > 1 Ceko
03=—nr—.
or equivalently if 1+ CeH
M > l Therefore,
________ C. 0.3(1 + Cefy = Cet®
. . . In (é) $0
The use of some algebra shows that this happens if and only if 7 > ME - to. 0.3 = 0.7Ce*
If we ignore the fact that gmpulation must be positive, the graph of the solution and
""""""" CoMi™ o _ 03
functioniP(t) = M T — 1 appears as follows: e = 0.7C"

This shows that o3 o3
b= ln(ﬁ) _ m(n.m.oéésus)) = 2807
°T Tk T oom2z T

hours.

After 28.07 hours, 30% of the student population had heard the rumor.




3.2 & 3.3 Volumes of Revolution

Volumes of Revolution: The Disk Method | Volumes of Revolution: The Disk Method Il
Let f be continuous on [a, b] with f(x) > O for all x € [a,b]. Let W be the Let f and g be continuous on [a, b] with 0 < f(x) < g(x) for all x € [a,b].
region bounded by the graphs of f, the x-axis and the lines x = @ and x = b. Let W be the region bounded by the graphs of f and g, and the lines x = a
Then the volume V of the solid of revolution obtained by rotating the region and x = b. Then the volume V of the solid of revolution obtained by rotating
W around the x-axis is given by the region W around the x-axis is given by
b b
V= f nf(x)dx. V= f m(g(x) = f(x)%) dx.
un CF7 F Y
Volumes of Revolution: The Shell Method Fe o of X unctions of Y
Let @ > 0. Let f and g be continuous on [a, b] with f(x) < g(x) for all . A Y /md/i[q/ Waféf/.f[./l:fkf
x € [a,b]. Let W be the region bounded by the graphs of f and g, and the V€f+f (Q/ 546”5
lines x = a and x = b. Then the volume V of the solid of revolution obtained , I'n e
by rotating the region W around the y-axis is given by
b
V= f 2rx(g(x) — f(x)) dx. .
a WShers/ o) ks CYlindyical

Horizon/ Shells

3.4 Arc length

Arc Length

Let f be continuously differentiable on [a, b]. Then the arc length S of the
graph of f over the interval [a, b] is given by

S = jj L+ (f(x)*dx
4.1 - Introduction to Differential Equations

DEFINITION Differential Equation NOTE

A differential equation is an equation involving an independent variable such as x, a
function y = y(x) and various derivatives of y. In general, we will write

1) In this course, we will typically consider only first-order differential
F@y,y',y",y™) =0. equations. Such DEs can be written in the form

A solution to the differential equation is a function ¢ such that

v =)
Fx, (), @’ (x), - ™ (@) = 0.

A solution for a first-order differentiable equation is a function ¢ for which
The highest order of a derivative appearing in the equation is called the order of the q ¢

differential equation.

@'(x0) = f(x, p(x)).

2) The simplest first-order DE is the equation
y' = f).
Hence y = y(x) is a solution if and only if y is an antiderivative of f.
Therefore, the solutions to this equation are given by
ff(x)dx =F(x)+C
where F is any antiderivative of f and C € R is an arbitrary constant. This
shows that differential equations do not need to have unique solutions. In
particular, each different choice of C results in a new solution. The constant C
is called a parameter and the collection of solutions {F(x) + C | C € R} is
called a one parameter family. <
" . .
4.5.1 - Direction Fields
x | y | tangent line slope from DE ,
s . ’ ////Mr””/ 1111
" = sl =2 —
210 V= 2+0=-2 y'= slope = rrrlir
- 2 N~—— 7777\ L]
-1 0 y =-140=-1 NSN~—— 7 M7 LLL 1]
0[0]  y=0+0=0 S Th leted direction field SNSS===Z200
y = = ki e completed direction fie SN2 A0 00
110 y=1+0=1 . for NNNNN~~—— A7 777777111
o \ . - P NNNNNN~~——AAF 7777711
210 y'=2+0=2 2 1 1 : - , NN~ 7777
= y =x+y % AN g7 CAVAVAES
T e v VIV LY NN
11 y =1+1=2 is shown. VIVY VNN NN INS—CS2 277
Sl -2 M e e R R Y A A
2 1 y' =2+1=3 VIV VMV VN AVAMANAN NSNS
7 LR A NIV N et
T y=1ea=2 . E LTINS
-1 -1 y=-1+-1=-2 UV UV VLU VSN VNN N NSNS ——




Week 6: March 1 - 5
Textbook Sections/Topics:

e Section 5.1
e Section 5.2
e Section 5.3

e Section 5.4

Introduction to Series

Geometric Series

Divergence Test

Arithmetic of Series

5.1 - Introduction to Series

DEFINITION

5.2

DEFINITION

5.3

THEOREM 2

Series Definition: Series

Given a sequence {a,}, the formal sum
atmtaztastta,+oe-

is called a series. The series is called formal because we have not yet given it a
meaning numerically.

The a,’s are called the ferms of the series. For each term a,,, the index of the term is
n.

‘We will denote the series by

e

n=1

- Geometric Series

Geometric Series Definition: Geometric Series
A geometric series is a series of the form

o

Zr"=1+r+#+;5+r“+-~-

n=0

The number r is called the ratio of the series.

- Divergence Test

Divergence Test Theorem: Divergence Test

Assume that )} a, converges. Then

n=1

lim a, = 0.
ey

Equivalently, if lim a, # 0 or if lim a, does not exist, then Y’ a, diverges.
n—co n—co =

The Divergence Test gets its name because it can identify certain series as being
divergent, but it cannot show that a series converges.

5.4

THEOREM 3

- Arithmetic of Series

Arithmetic for Series | Theorem: Arithmetic for Series |

Assume that }} a, and }, b, both converge.
n=1 n=1

1. The series )] ca, converges for every ¢ € R and
n=1

-
S

n=1 n=1

2. The series Y, (a, + b,) converges and
n=1

i(a,. +h) = i“" + ib,,.
n=1

n=1 n=1

DEFINITION

THEOREM 1

Convergence of a Series  Definition: Convergence of a Series

Given a series

oo

a, 5

n=1 a'*';

for each k € N, we define the k-th partial sum S by

‘We say that the series ), a, converges if the sequence {S} of partial sums

n=1
converges. In this case, if L = l}im S, then we write
oo

o
and assign the sum this value. Otherwise, we say that the series Y, a, diverges.
n=1

Geometric Series Test Theorem: Geometric Series Test

The geometric series i " converges if | 7 |< 1 and diverges otherwise.
=0

If| r |< 1, then

oo

1
N

n=0

Question: If lim a, = 0, does this mean that ) a, converges?
n—oo n=1

We will see that the answer to the question above is: No, the fact that

lim a, = 0, does not mean that ), a, converges.

n—oo

THEOREM 4

n=1

Arithmetic for Series I Theorem: Arithmetic for Series Il
1. If )} a, converges, then ), a, also converges for each j.
n=1 n=j

® «
2. If 3} a, converges for some j, then }, a, converges.
n=j n=1

In either of these two cases,

o

o
Za,,=a1+a2+~-»+aj,l+za,,.
=)

n=1



5.5 - Positive Series

DEFINITION  Monotonic Sequences

Given a sequence {a,}, we say that the sequence is

i) non-decreasing if a,.; > a, for every n € N.
ii) increasing if a,,, > a, for every n € N.
iii) non-increasing if a,., < a, for every n € N.

iv) decreasing if a,., < a, for every n € N.

‘We say that {a,} is monotonic if it satisfies one of these four conditions.

DEFINITION Positive Series

We call a series ), a, positive if the terms a, > 0 for all n € N.

n=1

5.6 - Integral Test

THEOREM 9  p-Series Test

The series Y, - converges if and only if p > 1.
n=1

n

5.7 - Alternating Series

DEFINITION Alternating Series

A series of the form

o0

Z(—l)"_'a,. =ai-a+as—a;+--
n=1

or of the form -
Z(—l)"an =-a+ay-az+ay—---
n=1

is said to be alternating provided that a, > 0 for all n.

THEOREM 5 Monotone Convergence Theorem (MCT)

Let {a,} be a non-decreasing sequence.

1. If {a,} is bounded above, then {a,} converges to L = lub({a,}).

2. If {a,} is not bounded above, then {a,} diverges to co.

In particular, {a,} converges if and only if it is bounded above.

THEOREM 6  Comparison Test for Series

Assume that 0 < a,, < b, for each n € N.

1. If i b, converges, then io] a, converges.

n=1 n=
2. If f‘, a, diverges, then ;‘, b, diverges.

n=1 n=1

THEOREM 7  Limit Comparison Test (LCT)

Assume that @, > 0 and b, > 0 for each n € N. Assume also that
an
lim — =L
55,

where either L € R or L = co.

1. If 0 < L < oo, then E a, converges if and only if E“ b, converges.
n=1

2. If L =0and E b, converges, then i a, converges. Equivalently, if E @
n=l n=1 n=1

diverges, then so does f‘, by.

w

. If L = co and }; a, converges, then ), b, converges. Equivalently, if )} b,
n=1 n=1 n=1

diverges, then so does ), ay.

n=1

THEOREM 8 Integral Test for Convergence

Assume that

1. f is continuous on [1, o),
2. f(x)>0on[l,c0),
3. fis decreasing on [1, c0), and

4. a; = flk).

n
Foreachn e N, letS, = Y a;. Then
k=1

i) Foralln € N,
+1 n
f fdx<S,<a +f f(x)dx.
1 1

ii) ) ax converges if and only if flw f(x) dx converges.
k=1

o
iii) In the case that )} a; converges, then
k=1

ff(x)dxskz:;aksal+[ f(x)dx
ff(x)dxss =Sa< ff(x)dx,
n+1 n

where S = 3. a;. (Note that by (ii), [ f(x) dx exists.)
k=1

and

THEOREM 10  Alternating Series Test (AST)

Assume that

1. a, > 0 for all n.
2. ayy < a, forall n.
3. lima, =0.
Then the alternating series
-1yta,
n=1
converges.

k o0
If S; = Y (=1)""'a,, then S approximates the sum S = 3, (—1)""'a, with an error
= n=1

n=
that is at most ;. That is
| Sk =S IS @



5.8 - Absolute Versus

DEFINITION  Absolute vs Conditional Convergence
A series io: ay is said to converge absolutely if
Dlanl
n=1
converges.
A series i a, is said to converge conditionally if
Z | an |
n=1
diverges while
2
n=1
converges.
DEFINITION Rearrangement of a Series Rearrangement of a Series

Given a series ), a, and a 1-1 and onto function ¢ : N — N, if we let

n=1
by = agm),
then the series .
2 bn
n=1

is called a rearrangement of ), a,.

n=

5.9 - Ratio Test

THEOREM 14  Polynomial vs Factorial Growth

For any x e R

Remark: This important limit tells us that exponentials are of a lower order of
magnitude compared to factorials. That is, for any fixed xy € R, | x¢ |"<< n!

Note: We know that the series ), r" will diverge if | r |= 1. Therefore, since the

n=0
conclusions of the Ratio Test are based on the Geometric Series Test, it might be
surprising that if L = 1, the Ratio Test would not show that the series diverges.

However, it is important to recognize that lim | “ |= 1 does not actually mean that
—.00 n

n
| ansx |=| ay | for large N as would be the case if the ratio was exactly 1.

The next two examples show that when L = 1 we could have either convergence or
divergence.

Fact: If p(x) = ap + ayx + --- + q;x* and g(x) = by + byx + - - - + b, x™" are two
polynomials, then the Ratio Test will always fail for the series

The following is a summary of what we have learned about the order of magnitude
of various functions:

In(n) < n” < X" <n! < n"

for| x|> 1.
Therefore,
1 1
—_ e — .
n" n! X" nP In(n)
THEOREM 15  Root Test

Given a series ), a,, assume that

lim +/|a,| = L
where L € R or L = co.

1. If 0 < L < 1, then )} a, converges absolutely.
n=1

2. If L > 1, then E a, diverges.

n=1

3. If L = 1, then no conclusion is possible.

Conditional Convergence

onvergence THEOREM 11  Absolute Convergence Theorem Absolute Convergence Theorem
If E | a,, | converges, then so does i ay.
n=l n=1
Note: The sums i | a, | and i a, will converge to different values unless a, > 0
n=1 =
for all n.
THEOREM 12 Rearrangement Theorem Rearrangement Theorem

1) Let ), a, be an absolutely convergent series. If ), b, is any rearrangement of
n=1

n=1

2. ay, then ), b, also converges and

n=1
=
b, = Z a,.

n=1

n=1

e

n

2) Let ) a, be a conditionally convergent series. Let @ € R or @ = +oco. Then

n=1

% ®
there exists a rearrangement ), b, of , a, such that
=l =1

Remark: In summary, whenever you must test a series with terms of mixed signs
for convergence it is always a good idea to first check if the series converges

absolutely.
THEOREM 13  Ratio Test
Given a series E ay, assume that
=0
lim [t = 7,
oo | @y,
where L € Ror L = co.
1. If0 < L < 1, then ) a, converges absolutely.
=0
2. If L > 1, then }; a, diverges.
=0
3. If L = 1, then no conclusion is possible.
Remarks:

1) If 0 < L < 1, the Ratio Test shows that the given series converges absolutely
and hence that the original series also converges.

2) If lim | “=L | = L exists with L # 1, then the series }; a, behaves like the

n=0

geometric series ), L" as far as convergence is concerned.
n=0
3) While the Ratio Test is one of the most important tests for convergence, we
will see that it cannot detect convergence or divergence for many of the series
we have seen so far. In fact, it can only detect convergence if the terms a,
approach 0 very rapidly, and it can only detect divergence if lim |a,| = co.
oo

This means that the Ratio Test is appropriate for a very special class of series.



.1

DEFINITION

DEFINITION

- Power Series

Power Series Powyr series
A power series centered at x = a is a series of the form

o

Z a,(x - a)"

n=0
where x is considered a variable and the value a, is called the coefficient of the term

(x—a)

Titerval and Rocliw of Convergencs.

Interval and Radius of Convergence

0
Given a power series of the form }; a,(x — a)", the set

to -~ Ignore this |

v
I'={x| Z | a,(xo — @)" converges}
n=0

is an interval centered at x = a which we call the interval of convergence for the
power series.

Let
Ro= lub({|xo — al | xo € I}) if I is bounded,
T e if I is not bounded.

Then R is called the radius of convergence of the power series.

R tell us how far we can deviate from a and still
maintain convergence

THEOREM 1

Fundamental Convergence Theorem for Power Series
Tundamentad Comecgence Thoorem fov fower Series

Given a power series ), a,(x —a)" centered at x = a, let R be the radius of
=0
convergence. "

1. If R = 0, then Y a,(x — a)" converges for x = a but it diverges for all other

values of x.
2. If 0 < R < oo, then the series ), a,(x — a)" converges absolutely for every

n=0
X € (@—R,a+ R) and diverges if | x —a |[> R.

3. If R = oo, then the series i a,(x — a)" converges absolutely for every x € R.
n=0

o

In particular, }; a,(x —a)" converges on an interval that is centered at x = a which
n=0

may or may not include one or both of the endpoints.

Remark: If 0 < R < oo, then there are four possibilities for the interval
of convergence I.

1) I =(a—R,a+ R) Example: f z" = I = (—-1,1).
n=0

2)I=[a—Ra+R) Example: 3 =~ = I = [—1,1).

n=1

3) I=(a—Ra+R] Example: 3° U™ o 1 (—1,1].
=1

) I=[a—Ra+R Example: 3 %3 =1=[1,1].
n=1

Key Note: Once R is determined, you need to test the endpoints

6.1.1 - Finding the Radius of Convergence

THEOREM 2

0.2

DEFINITION

Test forthe Rodiws of Grwergencer

Test for the Radius of Convergence

Let E a,(x — a)" be a power series for which
n=0

n+1
An

lim

n—eo

=L

where 0 < L < oo or L = co. Let R be the radius of convergence of the power series.

1. If0< L < oo, thenR = 1.
2. If L =0, then R = co.
3. If L = oo, thenR = 0.

THEOREM 3

- Functions Represented

Functions Represented by a Power Series
Let ), a,(x — a)" be a power series with radius of convergence R > 0. Let / be the
n=0

interval of convergence for E a,(x —a)". Let f be the function defined on the
n=0

interval / by the formula

o

f@ =) ax-ar

n=0
for each x € I.

We say that the function f(x) is represented by the power series E a,(x—a)"onl.

n=0

THEOREM 4

Equivalence of Radiws of Convergence

Equivalence of Radius of Convergence

Let p and g be non-zero polynomials where g(n) # O for n > k. Then the following
series have the same radius of convergence:

1. E an(x —a)
n=k

S
app(m(x—a)"
2. Z_:k q(n)

However, they may have different intervals of convergence.

Key Observation: The series

oo n ®© n

Z % and —
3n(n2 +1) 3n

n=0" n=0

have the same radius of convergence!

by Power Series

Abel's Thesrem . comtinuity oft Power series
Abel’s Theorem: Continuity of Power Series
Assume that the power series i a,(x — a)" has interval of convergence /. Let
n=0

o

f@ =) a(x-ar

n=0

for each x € I. Then f(x) is continuous on /.



0.2.

THEOREM 5

1 - Building Power Series Representations

Addition of Power Seriey
Addition of Power Series

Assume that f and g are represented by power series centered at x = a with

o

=) ax-a"

n=0
and -
g(x) = Z by(x—a)",
-0
respectively.

Assume also that the radii of convergence of these series are R, and R, with
intervals of convergence /; and /,. Then

(f+ () = ) (ay+bo)x = a)".

n=0

Moreover, if Ry # R,, then the radius of convergence of the power series
representing f + g is R = min{R¢, R,} and the interval of convergence is [ = I N I,.

If R/ = R,, then R > R;.

THEOREM 6

THEOREM 7

Mt;lﬁi:rlicationogf a Power Series by (x —a)”
Mulfipicaiion of o. powe™ Series
Assume that f is represented by a power series centered at x = a as

f@ =) ax-a)"

n=0
with radius of convergence R and interval of convergence /.

Assume that i(x) = (x —a)™ f(x) where m € N. Then h(x) can also be represented by
a power series centered at x = a with

oo

() =) an(x = @)™

n=0

Moreover, the series that represents / has the same radius of convergence and the
same interval of convergence as the series that represents f.

PoWer Series of Composile Funcbom

Power Series of Composite Functions

Assume that f has a power series representation

o

f) =) au

n=0

centered at u = 0 with radius of convergence R and interval of convergence /;. Let
h(x) = f(c - x™) where c is a non-zero constant. Then / has a power series
representation centered at x = 0 of the form

hx) = fle- 3" = ) (- )X

n=0

The interval of convergence is

I ={xeR|c-x" el

and the radius of convergence is R, = 1’”[% if Ry < 0o and Ry, = oo otherwise.

0.3 - Differentiation of Power Series

DEFINITION

THEOREM 9

—The Tormok Deyivitie. of & power Series

The Formal Derivative of a Power Series

Given a power series ), a,(x — a)", the formal derivative is the series
n=0

o0

Z na,(x —a)"" = i na,(x —a)"~'.

n=0 n=1

Uniqueness of Power Series Representations

Suppose that

)

=) ax-a"

n=0
for all x € (@ — R,a + R) where R > 0. Then
_ M@
C T
In particular, if

J@ =Y bx=a',
n=0
then
b, =a,

foreachn =0,1,2,3,---.

THEOREM 8

Term-by-Term Differentiation of Power Series
Assume that the power series i a,(x — a)" has radius of convergence R > 0. Let
n=0

)

= aE-a"

n=0

for all x € (@ — R,a + R). Then f is differentiable on (a — R, a + R) and for each
xe(@a—R,a+R),

o

@)= Z na,(x - a)"".

n=1

The interval of convergence may be different.



0.4 - Integration of Power Series

DEFINITION

Formal Antiderivative of a Power Series

Given a power series Y, a,(x — a)", we define the formal_antiderivative to be the
n=0

N g Y ol
;fa,,(x a) dx—C+nZ:;‘n+l(x a)"™.

where C is an arbitrary constant.

power series

Term-by-Term Integration of Power Series
Assume that the power series ), a,(x — a)" has radius of convergence R > 0. Let
n=0

f@ =Y ax-ay

n=0

for every x € (@ — R, a + R). Then the series

ifa,.(x—a)"dx =C+ i
=0 =0

also has radius of convergence R and if

an el
n+ 1(x )

an

F=C+y o S —ay™
n=0

then F'(x) = f(x).

Furthermore, if ¢, b] C (a — R,a + R), then

f' fdx = f' Za,,(x—a)"dx
c ¢ =0

i f ay(x—a)"dx

n=0 V¢

_ Z ,::1 (b =a)y™ = (c - ay™)
=0

Important Note: It may seem perfectly natural that we are also able to
integrate term-by-term functions that are represented by a power series.
In general, if

F(x) = fnlx)
n=1

for each x € [a, b], then we might hope that

b e b
/.1 F(I)d.r:;‘/a Falz)dz




6.5 - Review of Taylor Polynomials

DEFINITION  Taylor Polynomials

Assume that f is n-times differentiable at x = a. The n-th degree Taylor polynomial
for f centered at x = a is the polynomial

L] (k),
T = 3 Dimap
ik
rr (),
- @+ f@G-ay+ L zﬁ“) (=a) et %(x —ay"

NOTE

A remarkable property about T, , is that for any k between 0 and n,

T®(a) = f©(a).

does so! <

0.6 - Taylor's Theorem and Errors in Approximations

DEFINITION  Taylor Remainder

Assume that f is n times differentiable at x = a. Let

Rua(x) = f(2) = Tha()-

R, ,(x) is called the n-th degree Taylor remainder function centered at x = a.

The error in using the Taylor polynomial to approximate f is given by

Error =| R, ,(x) | .

THEOREM 12  Taylor’s Approximation Theorem |

Assume that f*+1 is continuous on [~1, 1]. Then there exists a constant M > 0 such
that
| f) = Tro(x) I< M | x [

or equivalently that
M | x < f(x) = Tio() < M| x [

for each x € [-1, 1].

6.7 - Introduction to Taylor Series

DEFINITION Taylor Series

Lt (n)

Assume that f has derivatives of all orders at a € R. The series ), %(x —a)'is
n=0

called the Taylor series for f centered at x = a.

We write

o
1@~ 3 L ay,

= "

In the special case where a = 0, the series is referred to as the Maclaurin series for
f.
Remark:

Up until now, we have started with a function that was represented by a power series
on its interval of convergence. In this case, the series that represents the function
must be the Taylor Series.

However, suppose that f is any function for which f"(a) exists for each n. Then we
can build the power series

)

(n)
E S Sa)(x—a)".
n!

n=0

However, we do not know the following:

1) For which values of x does the series

o @)
Z f (x—a)'
o n!
converge?

2) If the series converges at Xy, is it true that

O £(n)
f(xo) = Z A (a)(x[) —a"?

]
P

THEOREM 11 Taylor’s Theorem

Assume that f is n + 1-times differentiable on an interval / containing x = a. Let
x € I. Then there exists a point ¢ between x and a such that

ﬂ"*”(c)

1) G-a.

S @) = Tra(x) = Rya(x) =

‘We will make three important observations about Taylor’s theorem.

1) First, since T ,(x) = L,(x), when n = 1 the absolute value of the remainder
R, (x) represents the error in using the linear approximation. Taylor’s
Theorem shows that for some c,

| Ria0 1= 12— apt,

This shows explicitly how the error in linear approximation depends on the
potential size of [ ”(x)and on | x — a |, the distance from x to a.

2

~

0. In this case, the

conclusion states that for
any x € [ there exists a point ¢ between x and a such that

The second observation involves the case when n

() = Tou(x) = f/(c)(x - a).

But To(x) = f(a), so we have
fx) = fla)= f'()(x—a).

Dividing by x — a shows that there is a point ¢ between x and a such that

SO 1@ _

X—a

(x, f(0)

(a, f(a))

3

N7

really need to be able to say something intelligent about how large | f"*V(c) |
might be without knowing c. For an arbitrary function, this might be a
difficult task since higher order derivatives have a habit of being very
complicated. However, the good news is that for some of the most important
functions in mathematics, such as sin(x), cos(x), and e*, we can determine
roughly how large | f“*"(c) | might be and in so doing, show that the
estimates obtained for these functions can be extremely accurate.



0.8 - convergence of Taylor series

Remark: Before we present the next example we need to recall the following limit THEOREM 13
which we previously established as a consequence of the Ratio Test.
Let % € R. Then
lim M| x|
kim k! -
_______________________ =
Remark: Notice that in each of the previous examples that if either f(x) = cos(x) or
f(x) = sin(x), then the function f had the property that for any £k = 0, 1,2,3,... and
for each x € R, then
[FfPm)| < L.
.............. >
6.9 - Binomial Series
THEOREM 14
Remark: Consider the expression
nn-1Dn-2)---n—-k+1)
k! ;
Typically we are only concerned with the case where & € {0, 1,2,...,n}. But the
expression actually makes sense for any k € N U {0}. If k > n, then one of the terms
in the expression
nn-1)n-2)---mn—-k+1)
will be 0 and so
nn-1)n-2)---n-k+1) -0
k! o
Consequently,
- Dn-2)m-k+1
(1+x" = 1+Zn(n X Izl i )xk
=1 : DEFINITION
o n(n—l)(n—2)-~~(n—k+1)xk
k!
k=1
This leaves us to make the rather strange observation that the polynomial function
(1 + x)" is actually represented by the power series
S nn—-1D@n—-2)--(n—k+1)
1+ Z T x
k=1
In other words, 1 + 3 2a=DlnB-u-rl) ok s the Taylor Series centered at x = 0 for
the function (1 + )"
By itself the observation above does not tell us anything new about the function
(1 + x)". However it does give us an important clue towards answering the following
question.
THEOREM 15

Convergence Theorem for Taylor Series

Assume that f(x) has derivatives of all orders on an interval / containing x = a.
Assume also that there exists an M such that

Lf9@) s M

for all k and for all x € I. Then

= F0
=Y L0 gy
n=0 .

forall x e I.

Binomial Theorem

Leta € R and n € N. Then for each x € R we have that

(a+x) = i (Z)a"'kxj‘

k=0

where

n\ _ n!
k"~ k@m-k)
In particular, when a = 1 we have

(1+x)”=1+Zn(”_1)(”‘2)“~(n—k+1)xk.

1
= k!

Generalized Binomial Coefficients and Binomial Series

LeteeRandletk €{0,1,2,3,...}. Then we define the generalized binomial

coefficient
R o\ ale-D@=-2)---(@-k+1)
(k) B k!

if k # 0 and

We also define the generalized binomial series for @ to be the power series

1+

Za’(a—l)(af—Z)...(a—k+1)xk=Z((M))&

k=1 k! k=0 K

Generalized Binomial Theorem

(_l__j:_{c_)_a o Z a(a - 1)(a - Zk)'. c(@—k+ 1)% . Z (Z)xk.
k=1 . k=0

6.10 - Application of Taylor Series

Note: This series representation for arctan(x) is called the Gregory’s series after the
Scottish mathematician of the same name. The famous series expansion for 7 which
we derived from Gregory’s series is called Leibniz’s formula for . <



